Eval_Card_Form / app.py
felfri's picture
Update app.py
14fd56d verified
import gradio as gr
import yaml
import json
import os
from typing import Dict, List, Any, Tuple
from datetime import datetime
class AIEvaluationForm:
def __init__(self, template_file: str = "questions.yaml"):
"""Initialize the evaluation form with questions from YAML file"""
self.template_file = template_file
self.template = self.load_template()
self.components = {}
def load_template(self) -> Dict:
"""Load evaluation template from YAML file"""
try:
with open(self.template_file, 'r', encoding='utf-8') as f:
return yaml.safe_load(f)
except FileNotFoundError:
raise FileNotFoundError(f"Template file '{self.template_file}' not found. Please ensure the file exists.")
except yaml.YAMLError as e:
raise ValueError(f"Error parsing YAML file: {e}")
def create_system_info_section(self) -> Tuple[List, Dict]:
"""Create the system information section"""
components = {}
with gr.Group():
gr.Markdown("## πŸ“‹ AI System Information")
gr.Markdown("*Please provide basic information about the AI system being evaluated.*")
components['name'] = gr.Textbox(
label="AI System Name",
placeholder="e.g., GPT-4, BERT, StarCoder2",
info="The official name of your AI system"
)
components['provider'] = gr.Textbox(
label="Provider/Organization",
placeholder="e.g., OpenAI, Google, BigCode",
info="The organization that developed the system"
)
components['url'] = gr.Textbox(
label="System URL",
placeholder="e.g., https://huggingface.co/model-name",
info="URL to the model, paper, or documentation"
)
components['type'] = gr.Dropdown(
choices=[
"Generative Model",
"Discriminative Model/Classifier",
"Regressor",
"(Reinforcement Learning) Agent",
"Other"
],
label="System Type",
value="Generative Model",
info="Primary category of the AI system"
)
components['input modalities'] = gr.CheckboxGroup(
choices=[
"Text",
"Image",
"Audio",
"Video",
"Tabular",
],
label="Input modalities (select all that apply)",
value=["Text"],
info="input modalities supported by the system"
)
components['output modalities'] = gr.CheckboxGroup(
choices=[
"Text",
"Image",
"Audio",
"Video",
"Tabular",
],
label="Output Modalities (select all that apply)",
value=["Text"],
info="output modalities supported by the system"
)
return list(components.values()), components
def create_evaluation_sections(self) -> Tuple[List, Dict]:
"""Create dynamic evaluation sections from template"""
all_components = []
section_components = {}
for section_name, section_data in self.template.items():
with gr.Group():
gr.Markdown(f"## {section_name}")
section_components[section_name] = {}
for subsection_name, subsection_data in section_data.items():
with gr.Accordion(subsection_name, open=False):
# Explainer text
gr.Markdown(f"**Explainer:** {subsection_data['explainer']}")
# Overall status
status_component = gr.Radio(
choices=["Yes", "No", "N/A"],
label=f"Overall Status",
value="N/A",
info="Does this subsection apply to your system and have you conducted these evaluations?"
)
# Sources/Evidence
sources_component = gr.Textbox(
label="Sources & Evidence",
placeholder="Enter sources, papers, benchmarks, or evidence (one per line)\nExample:\nhttps://arxiv.org/abs/2402.19173\nBOLD Bias Benchmark\nInternal evaluation report",
lines=4,
info="Provide references to evaluations, papers, benchmarks, or internal reports"
)
# Individual questions
gr.Markdown("**Detailed Questions:**")
question_components = {}
# IMPORTANT: Add components in the correct order - status, sources, then questions
all_components.extend([status_component, sources_component])
for question in subsection_data['questions']:
question_component = gr.Checkbox(
label=question,
value=False,
#info="Check if this evaluation has been performed"
)
question_components[question] = question_component
all_components.append(question_component)
section_components[section_name][subsection_name] = {
'status': status_component,
'sources': sources_component,
'questions': question_components
}
return all_components, section_components
def parse_sources(self, sources_text: str) -> List[Dict]:
"""Parse sources text into structured format"""
sources = []
# Handle case where sources_text might not be a string
if not isinstance(sources_text, str):
return sources
if not sources_text.strip():
return sources
for line in sources_text.strip().split('\n'):
line = line.strip()
if not line:
continue
# Determine source type based on content
if line.startswith('http'):
source_type = "🌐"
name = line.split('/')[-1] if '/' in line else line
elif 'internal' in line.lower() or 'proprietary' in line.lower():
source_type = "🏒"
name = line
else:
source_type = "πŸ“„"
name = line
sources.append({
"type": source_type,
"detail": line,
"name": name
})
return sources
def generate_scorecard(self, *args) -> Tuple[Dict, str]:
"""Generate scorecard JSON from form inputs"""
# Debug: Print argument types and counts
print(f"Total arguments received: {len(args)}")
for i, arg in enumerate(args[:10]): # Print first 10 for debugging
print(f"Arg {i}: {type(arg)} = {arg}")
# Extract system info (first 5 arguments)
name, provider, url, sys_type, inp_modalities, out_modalities = args[:6]
remaining_args = list(args[5:])
# Build metadata
metadata = {
"Name": name or "Unknown",
"Provider": provider or "Unknown",
"URL": url or "",
"Type": sys_type or "Unknown",
"Input Modalities": inp_modalities or [],
"Output Modalities": out_modalities or []
}
# Build scores
scores = {}
arg_index = 0
for section_name, section_data in self.template.items():
scores[section_name] = {}
for subsection_name, subsection_data in section_data.items():
# Get status and sources (next 2 arguments)
if arg_index < len(remaining_args):
status = remaining_args[arg_index]
print(f"Status for {section_name}/{subsection_name}: {type(status)} = {status}")
else:
status = "N/A"
if arg_index + 1 < len(remaining_args):
sources_text = remaining_args[arg_index + 1]
print(f"Sources for {section_name}/{subsection_name}: {type(sources_text)} = {sources_text}")
else:
sources_text = ""
# Ensure sources_text is a string
if not isinstance(sources_text, str):
sources_text = str(sources_text) if sources_text is not None else ""
# Parse sources
sources = self.parse_sources(sources_text)
# Get question responses
questions_dict = {}
question_start_index = arg_index + 2
num_questions = len(subsection_data['questions'])
for i, question in enumerate(subsection_data['questions']):
q_index = question_start_index + i
if q_index < len(remaining_args):
questions_dict[question] = remaining_args[q_index]
else:
questions_dict[question] = False
# Store subsection data
scores[section_name][subsection_name] = {
"status": status,
"sources": sources,
"questions": questions_dict
}
# Move to next subsection (2 for status/sources + number of questions)
arg_index += 2 + num_questions
# Create final scorecard
scorecard = {
"metadata": metadata,
"scores": scores
}
# Generate filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
safe_name = (name or "ai_system").replace(' ', '_').lower()
filename = f"{safe_name}_scorecard_{timestamp}.json"
return scorecard, filename
def create_interface(self):
"""Create the complete Gradio interface"""
with gr.Blocks(
title="AI System Evaluation Scorecard",
# theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1400px !important;
margin: 0 auto !important;
padding: 20px !important;
width: 95% !important;
}
.main {
max-width: 1400px !important;
margin: 0 auto !important;
width: 100% !important;
}
.container {
max-width: 1400px !important;
margin: 0 auto !important;
width: 100% !important;
}
.accordion-header {
background-color: #f0f0f0 !important;
}
.block {
width: 100% !important;
}
/* Ensure form elements use full width */
.form {
width: 100% !important;
}
/* Center the entire app */
#root {
display: flex !important;
justify-content: center !important;
width: 100% !important;
}
"""
) as demo:
# Header
gr.Markdown("""
# πŸ” AI System Evaluation Scorecard
This comprehensive evaluation form helps you assess AI systems across multiple dimensions including bias,
cultural sensitivity, environmental impact, privacy, and more. Complete the sections relevant to your system
to generate a detailed scorecard.
---
""")
# System information section
system_inputs, system_components = self.create_system_info_section()
# Evaluation sections
eval_inputs, eval_components = self.create_evaluation_sections()
self.components = {**system_components, **eval_components}
# Generate button and outputs
with gr.Group():
gr.Markdown("## πŸ“Š Generate Scorecard")
with gr.Row():
generate_btn = gr.Button(
"πŸš€ Generate Evaluation Scorecard",
variant="primary",
size="lg",
scale=2
)
clear_btn = gr.Button(
"πŸ—‘οΈ Clear Form",
variant="secondary",
scale=1
)
# Progress indicator
progress = gr.Progress()
# Outputs
with gr.Group():
gr.Markdown("### πŸ“‹ Generated Scorecard")
with gr.Row():
json_output = gr.JSON(
label="Scorecard JSON",
show_label=True
)
with gr.Row():
download_file = gr.File(
label="Download Scorecard",
visible=False
)
download_btn = gr.Button(
"πŸ’Ύ Download JSON",
visible=False,
variant="secondary"
)
# Event handlers
all_inputs = system_inputs + eval_inputs
def generate_with_progress(*args):
"""Generate scorecard with progress indication"""
progress(0.3, desc="Processing inputs...")
scorecard, filename = self.generate_scorecard(*args)
progress(0.7, desc="Generating JSON...")
json_content = json.dumps(scorecard, indent=2)
progress(1.0, desc="Complete!")
# Save to temporary file for download
with open(filename, 'w') as f:
f.write(json_content)
return (
scorecard, # JSON display
gr.File(value=filename, visible=True), # File for download
gr.Button(visible=True) # Show download button
)
def clear_form():
"""Clear all form inputs"""
return [None] * len(all_inputs)
# Wire up events
generate_btn.click(
fn=generate_with_progress,
inputs=all_inputs,
outputs=[json_output, download_file, download_btn],
show_progress="full"
)
clear_btn.click(
fn=clear_form,
outputs=all_inputs
)
# Add example data button
with gr.Group():
gr.Markdown("### πŸ“š Quick Start")
example_btn = gr.Button("πŸ“ Load Example Data", variant="secondary")
def load_example():
"""Load example data for StarCoder2-like system"""
example_data = [
"StarCoder2", # name
"BigCode", # provider
"https://huggingface.co/bigcode/starcoder2-15b", # url
"Generative Model", # type
["Text"] # input modalities
["Text"] # output modalities
]
# Add default values for evaluation sections (all N/A initially)
remaining_defaults = []
for section_name, section_data in self.template.items():
for subsection_name, subsection_data in section_data.items():
remaining_defaults.extend([
"N/A", # status
"", # sources
*([False] * len(subsection_data['questions'])) # questions
])
return example_data + remaining_defaults
example_btn.click(
fn=load_example,
outputs=all_inputs
)
return demo
def main():
"""Main function to run the application"""
try:
# Create the evaluation form
eval_form = AIEvaluationForm("questions.yaml")
# Create and launch the interface
demo = eval_form.create_interface()
print("πŸš€ Launching AI Evaluation Scorecard...")
print(f"πŸ“ Loading questions from: {eval_form.template_file}")
print(f"πŸ“Š Found {len(eval_form.template)} evaluation categories")
# Count total questions
total_questions = sum(
len(subsection['questions'])
for section in eval_form.template.values()
for subsection in section.values()
)
print(f"❓ Total evaluation questions: {total_questions}")
demo.launch(
ssr_mode=False,
share=False,
inbrowser=False,
show_error=True,
quiet=False
)
except FileNotFoundError as e:
print(f"❌ Error: {e}")
print("Please ensure 'questions.yaml' exists in the current directory.")
except Exception as e:
print(f"❌ Unexpected error: {e}")
if __name__ == "__main__":
main()