Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,43 +4,82 @@ import gradio as gr
|
|
4 |
import pandas as pd
|
5 |
import plotly.express as px
|
6 |
import time
|
|
|
7 |
from datasets import load_dataset
|
8 |
|
9 |
# --- Constants ---
|
10 |
PARAM_CHOICES = ['< 1B', '1B', '5B', '12B', '32B', '64B', '128B', '256B', '> 500B']
|
11 |
-
|
12 |
|
13 |
-
# --- NEW: Define choices for the Top-K dropdown ---
|
14 |
TOP_K_CHOICES = list(range(5, 51, 5))
|
15 |
-
|
16 |
HF_DATASET_ID = "evijit/orgstats_daily_data"
|
17 |
TAG_FILTER_CHOICES = [ "Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images", "Text", "Biomedical", "Sciences" ]
|
18 |
PIPELINE_TAGS = [ 'text-generation', 'text-to-image', 'text-classification', 'text2text-generation', 'audio-to-audio', 'feature-extraction', 'image-classification', 'translation', 'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition', 'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering', 'image-feature-extraction', 'summarization', 'zero-shot-image-classification', 'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text', 'audio-classification', 'visual-question-answering', 'text-to-video', 'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video', 'multiple-choice', 'unconditional-image-generation', 'video-classification', 'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text', 'table-question-answering' ]
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def load_models_data():
|
21 |
overall_start_time = time.time()
|
22 |
print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}")
|
23 |
try:
|
24 |
dataset_dict = load_dataset(HF_DATASET_ID)
|
25 |
-
|
26 |
-
split_name = list(dataset_dict.keys())[0]
|
27 |
-
df = dataset_dict[split_name].to_pandas()
|
28 |
-
elapsed = time.time() - overall_start_time
|
29 |
if 'params' in df.columns:
|
30 |
df['params'] = pd.to_numeric(df['params'], errors='coerce').fillna(0)
|
31 |
else:
|
32 |
df['params'] = 0
|
33 |
-
|
34 |
-
msg = f"Successfully loaded dataset '{HF_DATASET_ID}' (split: {split_name}) from HF Hub in {elapsed:.2f}s. Shape: {df.shape}"
|
35 |
print(msg)
|
36 |
return df, True, msg
|
37 |
except Exception as e:
|
38 |
-
err_msg = f"Failed to load dataset
|
39 |
print(err_msg)
|
40 |
return pd.DataFrame(), False, err_msg
|
41 |
|
42 |
def get_param_range_values(param_range_labels):
|
43 |
-
if not param_range_labels or len(param_range_labels) != 2: return None, None
|
44 |
min_label, max_label = param_range_labels
|
45 |
min_val = 0.0 if '<' in min_label else float(min_label.replace('B', ''))
|
46 |
max_val = float('inf') if '>' in max_label else float(max_label.replace('B', ''))
|
@@ -81,11 +120,18 @@ def create_treemap(treemap_data, count_by, title=None):
|
|
81 |
fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
|
82 |
return fig
|
83 |
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
models_data_state = gr.State(pd.DataFrame())
|
86 |
loading_complete_state = gr.State(False)
|
87 |
|
88 |
-
|
|
|
89 |
with gr.Row():
|
90 |
with gr.Column(scale=1):
|
91 |
count_by_dropdown = gr.Dropdown(label="Metric", choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")], value="downloads")
|
@@ -94,22 +140,20 @@ with gr.Blocks(title="ModelVerse Explorer", fill_width=True) as demo:
|
|
94 |
pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False)
|
95 |
|
96 |
with gr.Group():
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
105 |
|
106 |
-
|
107 |
-
top_k_dropdown = gr.Dropdown(
|
108 |
-
label="Number of Top Organizations",
|
109 |
-
choices=TOP_K_CHOICES,
|
110 |
-
value=25
|
111 |
-
)
|
112 |
-
|
113 |
skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski")
|
114 |
generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)
|
115 |
|
@@ -118,21 +162,6 @@ with gr.Blocks(title="ModelVerse Explorer", fill_width=True) as demo:
|
|
118 |
status_message_md = gr.Markdown("Initializing...")
|
119 |
data_info_md = gr.Markdown("")
|
120 |
|
121 |
-
def _update_slider_ui_elements(current_range_indices):
|
122 |
-
if not isinstance(current_range_indices, list) or len(current_range_indices) != 2: return gr.update(), gr.update()
|
123 |
-
min_idx, max_idx = int(current_range_indices[0]), int(current_range_indices[1])
|
124 |
-
min_label, max_label = PARAM_CHOICES[min_idx], PARAM_CHOICES[max_idx]
|
125 |
-
label_md = f"<div style='font-weight: 500;'>Parameters <span style='float: right; font-weight: normal; color: #555;'>{min_label} to {max_label}</span></div>"
|
126 |
-
is_default = (min_idx == 0 and max_idx == len(PARAM_CHOICES) - 1)
|
127 |
-
return label_md, gr.update(visible=not is_default)
|
128 |
-
|
129 |
-
def _reset_param_slider_and_ui():
|
130 |
-
default_label = "<div style='font-weight: 500;'>Parameters</div>"
|
131 |
-
return gr.update(value=PARAM_CHOICES_DEFAULT_INDICES), default_label, gr.update(visible=False)
|
132 |
-
|
133 |
-
param_slider.release(fn=_update_slider_ui_elements, inputs=param_slider, outputs=[param_label_display, reset_params_button])
|
134 |
-
reset_params_button.click(fn=_reset_param_slider_and_ui, outputs=[param_slider, param_label_display, reset_params_button])
|
135 |
-
|
136 |
def _update_button_interactivity(is_loaded_flag): return gr.update(interactive=is_loaded_flag)
|
137 |
loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button)
|
138 |
|
@@ -156,21 +185,23 @@ with gr.Blocks(title="ModelVerse Explorer", fill_width=True) as demo:
|
|
156 |
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
|
157 |
status_msg_ui = status_msg_from_load
|
158 |
except Exception as e:
|
159 |
-
status_msg_ui = f"An unexpected error occurred
|
160 |
data_info_text = f"### Critical Error\n- {status_msg_ui}"
|
161 |
load_success_flag = False
|
162 |
print(f"Critical error in ui_load_data_controller: {e}")
|
163 |
return current_df, load_success_flag, data_info_text, status_msg_ui
|
164 |
|
165 |
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
|
166 |
-
|
167 |
if df_current_models is None or df_current_models.empty:
|
168 |
return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded."
|
|
|
169 |
progress(0.1, desc="Preparing data...")
|
170 |
tag_to_use = tag_choice if filter_type == "Tag Filter" else None
|
171 |
pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
|
172 |
orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()]
|
173 |
|
|
|
174 |
min_label = PARAM_CHOICES[int(param_range_indices[0])]
|
175 |
max_label = PARAM_CHOICES[int(param_range_indices[1])]
|
176 |
param_labels_for_filtering = [min_label, max_label]
|
@@ -186,22 +217,22 @@ with gr.Blocks(title="ModelVerse Explorer", fill_width=True) as demo:
|
|
186 |
plot_stats_md = "No data matches the selected filters. Please try different options."
|
187 |
else:
|
188 |
total_items_in_plot = len(treemap_df['id'].unique())
|
189 |
-
total_value_in_plot = treemap_df[
|
190 |
plot_stats_md = f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}"
|
191 |
return plotly_fig, plot_stats_md
|
192 |
|
193 |
-
demo.load(fn=ui_load_data_controller, inputs=[], outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md])
|
|
|
194 |
|
195 |
-
# --- MODIFIED: The inputs list now uses top_k_dropdown ---
|
196 |
generate_plot_button.click(
|
197 |
fn=ui_generate_plot_controller,
|
198 |
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
|
199 |
-
|
200 |
outputs=[plot_output, status_message_md]
|
201 |
)
|
202 |
|
203 |
if __name__ == "__main__":
|
204 |
-
print(f"Application starting
|
205 |
demo.queue().launch()
|
206 |
|
207 |
# --- END OF FINAL POLISHED FILE app.py ---
|
|
|
4 |
import pandas as pd
|
5 |
import plotly.express as px
|
6 |
import time
|
7 |
+
import json
|
8 |
from datasets import load_dataset
|
9 |
|
10 |
# --- Constants ---
|
11 |
PARAM_CHOICES = ['< 1B', '1B', '5B', '12B', '32B', '64B', '128B', '256B', '> 500B']
|
12 |
+
PARAM_CHOICES_DEFAULT_INDICES_JSON = json.dumps([0, len(PARAM_CHOICES) - 1])
|
13 |
|
|
|
14 |
TOP_K_CHOICES = list(range(5, 51, 5))
|
|
|
15 |
HF_DATASET_ID = "evijit/orgstats_daily_data"
|
16 |
TAG_FILTER_CHOICES = [ "Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images", "Text", "Biomedical", "Sciences" ]
|
17 |
PIPELINE_TAGS = [ 'text-generation', 'text-to-image', 'text-classification', 'text2text-generation', 'audio-to-audio', 'feature-extraction', 'image-classification', 'translation', 'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition', 'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering', 'image-feature-extraction', 'summarization', 'zero-shot-image-classification', 'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text', 'audio-classification', 'visual-question-answering', 'text-to-video', 'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video', 'multiple-choice', 'unconditional-image-generation', 'video-classification', 'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text', 'table-question-answering' ]
|
18 |
|
19 |
+
# --- Custom HTML, CSS, and JavaScript for the Slider ---
|
20 |
+
custom_slider_js = """
|
21 |
+
function createCustomSlider() {
|
22 |
+
const paramChoices = [<1B>, <1B>, <5B>, <12B>, <32B>, <64B>, <128B>, <256B>, <500B>];
|
23 |
+
const slider = document.getElementById('noui-slider-container');
|
24 |
+
if (slider.noUiSlider) {
|
25 |
+
slider.noUiSlider.destroy();
|
26 |
+
}
|
27 |
+
noUiSlider.create(slider, {
|
28 |
+
start: [0, paramChoices.length - 1],
|
29 |
+
connect: true,
|
30 |
+
step: 1,
|
31 |
+
range: { 'min': 0, 'max': paramChoices.length - 1 },
|
32 |
+
pips: {
|
33 |
+
mode: 'values',
|
34 |
+
values: Array.from(Array(paramChoices.length).keys()),
|
35 |
+
density: 100 / (paramChoices.length - 1),
|
36 |
+
format: { to: function(value) { return paramChoices[value]; } }
|
37 |
+
}
|
38 |
+
});
|
39 |
+
|
40 |
+
const paramRangeStateInput = document.querySelector('#param-range-state-js textarea');
|
41 |
+
slider.noUiSlider.on('update', function (values) {
|
42 |
+
const intValues = values.map(v => parseInt(v, 10));
|
43 |
+
const newValue = JSON.stringify(intValues);
|
44 |
+
if (paramRangeStateInput.value !== newValue) {
|
45 |
+
paramRangeStateInput.value = newValue;
|
46 |
+
const event = new Event('input', { bubbles: true });
|
47 |
+
paramRangeStateInput.dispatchEvent(event);
|
48 |
+
}
|
49 |
+
});
|
50 |
+
|
51 |
+
function highlightPips(values) {
|
52 |
+
const intValues = values.map(v => parseInt(v, 10));
|
53 |
+
document.querySelectorAll('.noUi-value').forEach((pip, index) => {
|
54 |
+
const pipIsSelected = index >= intValues[0] && index <= intValues[1];
|
55 |
+
pip.style.fontWeight = pipIsSelected ? 'bold' : 'normal';
|
56 |
+
pip.style.color = pipIsSelected ? '#000' : '#777';
|
57 |
+
});
|
58 |
+
}
|
59 |
+
slider.noUiSlider.on('update', highlightPips);
|
60 |
+
highlightPips([0, paramChoices.length - 1]);
|
61 |
+
}
|
62 |
+
"""
|
63 |
+
|
64 |
def load_models_data():
|
65 |
overall_start_time = time.time()
|
66 |
print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}")
|
67 |
try:
|
68 |
dataset_dict = load_dataset(HF_DATASET_ID)
|
69 |
+
df = dataset_dict[list(dataset_dict.keys())[0]].to_pandas()
|
|
|
|
|
|
|
70 |
if 'params' in df.columns:
|
71 |
df['params'] = pd.to_numeric(df['params'], errors='coerce').fillna(0)
|
72 |
else:
|
73 |
df['params'] = 0
|
74 |
+
msg = f"Successfully loaded dataset in {time.time() - overall_start_time:.2f}s."
|
|
|
75 |
print(msg)
|
76 |
return df, True, msg
|
77 |
except Exception as e:
|
78 |
+
err_msg = f"Failed to load dataset. Error: {e}"
|
79 |
print(err_msg)
|
80 |
return pd.DataFrame(), False, err_msg
|
81 |
|
82 |
def get_param_range_values(param_range_labels):
|
|
|
83 |
min_label, max_label = param_range_labels
|
84 |
min_val = 0.0 if '<' in min_label else float(min_label.replace('B', ''))
|
85 |
max_val = float('inf') if '>' in max_label else float(max_label.replace('B', ''))
|
|
|
120 |
fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
|
121 |
return fig
|
122 |
|
123 |
+
custom_head = """
|
124 |
+
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/noUiSlider/15.7.1/nouislider.min.css">
|
125 |
+
<script src="https://cdnjs.cloudflare.com/ajax/libs/noUiSlider/15.7.1/nouislider.min.js"></script>
|
126 |
+
"""
|
127 |
+
|
128 |
+
# --- MODIFIED: Added emoji to the browser tab title ---
|
129 |
+
with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, head=custom_head) as demo:
|
130 |
models_data_state = gr.State(pd.DataFrame())
|
131 |
loading_complete_state = gr.State(False)
|
132 |
|
133 |
+
# --- MODIFIED: Removed the main title from the page body for a cleaner look ---
|
134 |
+
|
135 |
with gr.Row():
|
136 |
with gr.Column(scale=1):
|
137 |
count_by_dropdown = gr.Dropdown(label="Metric", choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")], value="downloads")
|
|
|
140 |
pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False)
|
141 |
|
142 |
with gr.Group():
|
143 |
+
gr.Markdown("<div style='font-weight: 500;'>Parameters</div>")
|
144 |
+
gr.HTML("""
|
145 |
+
<div id="noui-slider-container" style="margin: 2rem 1rem;"></div>
|
146 |
+
<style>
|
147 |
+
.noUi-value { font-size: 12px; }
|
148 |
+
.noUi-pips-horizontal { padding: 10px 0; height: 50px; }
|
149 |
+
.noUi-connect { background: #333; }
|
150 |
+
.noUi-handle { border-radius: 50%; width: 20px; height: 20px; right: -10px; top: -7px; box-shadow: none; border: 2px solid #333; background: #FFF; cursor: pointer; }
|
151 |
+
.noUi-handle:focus { outline: none; }
|
152 |
+
</style>
|
153 |
+
""")
|
154 |
+
param_range_state_js = gr.Textbox(value=PARAM_CHOICES_DEFAULT_INDICES_JSON, visible=False, elem_id="param-range-state-js")
|
155 |
|
156 |
+
top_k_dropdown = gr.Dropdown(label="Number of Top Organizations", choices=TOP_K_CHOICES, value=25)
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski")
|
158 |
generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)
|
159 |
|
|
|
162 |
status_message_md = gr.Markdown("Initializing...")
|
163 |
data_info_md = gr.Markdown("")
|
164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
def _update_button_interactivity(is_loaded_flag): return gr.update(interactive=is_loaded_flag)
|
166 |
loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button)
|
167 |
|
|
|
185 |
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
|
186 |
status_msg_ui = status_msg_from_load
|
187 |
except Exception as e:
|
188 |
+
status_msg_ui = f"An unexpected error occurred: {str(e)}"
|
189 |
data_info_text = f"### Critical Error\n- {status_msg_ui}"
|
190 |
load_success_flag = False
|
191 |
print(f"Critical error in ui_load_data_controller: {e}")
|
192 |
return current_df, load_success_flag, data_info_text, status_msg_ui
|
193 |
|
194 |
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
|
195 |
+
param_range_json, k_orgs, skip_orgs_input, df_current_models, progress=gr.Progress()):
|
196 |
if df_current_models is None or df_current_models.empty:
|
197 |
return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded."
|
198 |
+
|
199 |
progress(0.1, desc="Preparing data...")
|
200 |
tag_to_use = tag_choice if filter_type == "Tag Filter" else None
|
201 |
pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
|
202 |
orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()]
|
203 |
|
204 |
+
param_range_indices = json.loads(param_range_json)
|
205 |
min_label = PARAM_CHOICES[int(param_range_indices[0])]
|
206 |
max_label = PARAM_CHOICES[int(param_range_indices[1])]
|
207 |
param_labels_for_filtering = [min_label, max_label]
|
|
|
217 |
plot_stats_md = "No data matches the selected filters. Please try different options."
|
218 |
else:
|
219 |
total_items_in_plot = len(treemap_df['id'].unique())
|
220 |
+
total_value_in_plot = treemap_df[metric_choice].sum()
|
221 |
plot_stats_md = f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}"
|
222 |
return plotly_fig, plot_stats_md
|
223 |
|
224 |
+
demo.load(fn=ui_load_data_controller, inputs=[], outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]) \
|
225 |
+
.then(fn=None, _js=custom_slider_js.replace("<", "'<").replace(">", "'"))
|
226 |
|
|
|
227 |
generate_plot_button.click(
|
228 |
fn=ui_generate_plot_controller,
|
229 |
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
|
230 |
+
param_range_state_js, top_k_dropdown, skip_orgs_textbox, models_data_state],
|
231 |
outputs=[plot_output, status_message_md]
|
232 |
)
|
233 |
|
234 |
if __name__ == "__main__":
|
235 |
+
print(f"Application starting...")
|
236 |
demo.queue().launch()
|
237 |
|
238 |
# --- END OF FINAL POLISHED FILE app.py ---
|