Avijit Ghosh commited on
Commit
a1a0756
·
1 Parent(s): 5bfd438

better execption handling

Browse files
Files changed (1) hide show
  1. app.py +57 -65
app.py CHANGED
@@ -1,5 +1,3 @@
1
- # --- START OF FILE app.py ---
2
-
3
  import json
4
  import gradio as gr
5
  import pandas as pd
@@ -162,7 +160,6 @@ def process_tags_for_series(series_of_tags_values, tqdm_cls=None): # Added tqdm_
162
 
163
 
164
  def load_models_data(force_refresh=False, tqdm_cls=None): # tqdm_cls for Gradio progress
165
- # ... (initial part of load_models_data for loading pre-processed parquet is the same) ...
166
  if tqdm_cls is None: tqdm_cls = tqdm # Default to standard tqdm if None
167
  overall_start_time = time.time()
168
  print(f"Gradio load_models_data called with force_refresh={force_refresh}")
@@ -242,11 +239,10 @@ def load_models_data(force_refresh=False, tqdm_cls=None): # tqdm_cls for Gradio
242
  if output_filesize_col_name in df_raw.columns and pd.api.types.is_numeric_dtype(df_raw[output_filesize_col_name]):
243
  df[output_filesize_col_name] = pd.to_numeric(df_raw[output_filesize_col_name], errors='coerce').fillna(0.0)
244
  elif 'safetensors' in df.columns:
245
- # Use tqdm_cls for progress tracking if available (Gradio's gr.Progress.tqdm)
246
  safetensors_iter = df['safetensors']
247
- if tqdm_cls and tqdm_cls != tqdm: # Check if it's Gradio's progress tracker
248
  safetensors_iter = tqdm_cls(df['safetensors'], desc="Extracting model sizes (GB)", unit="row")
249
- elif tqdm_cls == tqdm: # For direct console tqdm if passed
250
  safetensors_iter = tqdm(df['safetensors'], desc="Extracting model sizes (GB)", unit="row", leave=False)
251
 
252
  df[output_filesize_col_name] = [extract_model_size(s) for s in safetensors_iter]
@@ -266,7 +262,6 @@ def load_models_data(force_refresh=False, tqdm_cls=None): # tqdm_cls for Gradio
266
  else: return "Small (<1GB)" # Default
267
  df['size_category'] = df[output_filesize_col_name].apply(get_size_category_gradio)
268
 
269
- # >>> USE THE CORRECTED process_tags_for_series HERE <<<
270
  df['tags'] = process_tags_for_series(df['tags'], tqdm_cls=tqdm_cls)
271
 
272
  df['temp_tags_joined'] = df['tags'].apply(
@@ -293,7 +288,6 @@ def load_models_data(force_refresh=False, tqdm_cls=None): # tqdm_cls for Gradio
293
  df['is_biomed'] = df['has_bio'] | df['has_med']
294
  df['organization'] = df['id'].apply(extract_org_from_id)
295
 
296
- # Drop safetensors if params was calculated from it, and params didn't pre-exist as numeric
297
  if 'safetensors' in df.columns and \
298
  not (output_filesize_col_name in df_raw.columns and pd.api.types.is_numeric_dtype(df_raw[output_filesize_col_name])):
299
  df = df.drop(columns=['safetensors'], errors='ignore')
@@ -310,7 +304,6 @@ def load_models_data(force_refresh=False, tqdm_cls=None): # tqdm_cls for Gradio
310
  return df, True, final_msg
311
 
312
 
313
- # ... (make_treemap_data, create_treemap functions remain unchanged) ...
314
  def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, size_filter=None, skip_orgs=None):
315
  if df is None or df.empty: return pd.DataFrame()
316
  filtered_df = df.copy()
@@ -320,19 +313,10 @@ def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=N
320
 
321
  if 'has_robot' in filtered_df.columns:
322
  initial_robot_count = filtered_df['has_robot'].sum()
323
- # print(f"DIAGNOSTIC (make_treemap_data entry): Input df has {initial_robot_count} 'has_robot' models.") # Can be noisy
324
- # else:
325
- # print("DIAGNOSTIC (make_treemap_data entry): 'has_robot' column NOT in input df.")
326
-
327
  if tag_filter and tag_filter in col_map:
328
  target_col = col_map[tag_filter]
329
  if target_col in filtered_df.columns:
330
- # if tag_filter == "Robotics":
331
- # count_before_robot_filter = filtered_df[target_col].sum()
332
- # print(f"DIAGNOSTIC (make_treemap_data): Applying 'Robotics' filter. Models with '{target_col}'=True: {count_before_robot_filter}")
333
  filtered_df = filtered_df[filtered_df[target_col]]
334
- # if tag_filter == "Robotics":
335
- # print(f"DIAGNOSTIC (make_treemap_data): After 'Robotics' filter ({target_col}), df rows: {len(filtered_df)}")
336
  else:
337
  print(f"Warning: Tag filter column '{col_map[tag_filter]}' not found in DataFrame.")
338
  if pipeline_filter:
@@ -351,94 +335,111 @@ def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=N
351
  else:
352
  print("Warning: 'organization' column not found for filtering.")
353
  if filtered_df.empty: return pd.DataFrame()
354
- # Ensure count_by column is numeric, coercing if necessary
355
  if count_by not in filtered_df.columns or not pd.api.types.is_numeric_dtype(filtered_df[count_by]):
356
- # print(f"Warning: Column '{count_by}' for treemap values is not numeric or missing. Coercing to numeric, filling NaNs with 0.")
357
  filtered_df[count_by] = pd.to_numeric(filtered_df.get(count_by), errors="coerce").fillna(0.0)
358
 
359
- org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first') # Default keep='first'
360
  top_orgs_list = org_totals.index.tolist()
361
  treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy()
362
- treemap_data["root"] = "models" # For treemap structure
363
- treemap_data[count_by] = pd.to_numeric(treemap_data[count_by], errors="coerce").fillna(0.0) # Ensure numeric again after subsetting
364
  return treemap_data
365
 
366
  def create_treemap(treemap_data, count_by, title=None):
367
  if treemap_data.empty:
368
- fig = px.treemap(names=["No data matches filters"], parents=[""], values=[1]) # Placeholder for empty data
369
  fig.update_layout(title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25))
370
  return fig
371
  fig = px.treemap(
372
  treemap_data, path=["root", "organization", "id"], values=count_by,
373
  title=title or f"HuggingFace Models - {count_by.capitalize()} by Organization",
374
- color_discrete_sequence=px.colors.qualitative.Plotly # Example color sequence
375
  )
376
  fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
377
  fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
378
  return fig
379
 
380
- # --- Gradio UI and Controllers ---
381
  with gr.Blocks(title="HuggingFace Model Explorer") as demo:
382
  models_data_state = gr.State(pd.DataFrame())
383
- loading_complete_state = gr.State(False) # To control button interactivity
384
 
385
  with gr.Row():
386
  gr.Markdown("# HuggingFace Models TreeMap Visualization")
387
  with gr.Row():
388
- with gr.Column(scale=1): # Controls column
389
  count_by_dropdown = gr.Dropdown(label="Metric", choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")], value="downloads")
390
  filter_choice_radio = gr.Radio(label="Filter Type", choices=["None", "Tag Filter", "Pipeline Filter"], value="None")
391
  tag_filter_dropdown = gr.Dropdown(label="Select Tag", choices=TAG_FILTER_CHOICES, value=None, visible=False)
392
  pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False)
393
  size_filter_dropdown = gr.Dropdown(label="Model Size Filter", choices=["None"] + list(MODEL_SIZE_RANGES.keys()), value="None")
394
  top_k_slider = gr.Slider(label="Number of Top Organizations", minimum=5, maximum=50, value=25, step=5)
395
- skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski") # Common large orgs
396
 
397
- generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False) # Starts disabled
398
  refresh_data_button = gr.Button(value="Refresh Data from Hugging Face", variant="secondary")
399
 
400
- with gr.Column(scale=3): # Plot and info column
401
  plot_output = gr.Plot()
402
- status_message_md = gr.Markdown("Initializing...") # For general status updates
403
- data_info_md = gr.Markdown("") # For detailed data stats
404
 
405
- # Enable generate button only after data is loaded
406
  def _update_button_interactivity(is_loaded_flag):
407
  return gr.update(interactive=is_loaded_flag)
408
  loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button)
409
 
410
- # Show/hide tag/pipeline filters based on radio choice
411
  def _toggle_filters_visibility(choice):
412
  return gr.update(visible=choice == "Tag Filter"), gr.update(visible=choice == "Pipeline Filter")
413
  filter_choice_radio.change(fn=_toggle_filters_visibility, inputs=filter_choice_radio, outputs=[tag_filter_dropdown, pipeline_filter_dropdown])
414
 
415
 
416
- def ui_load_data_controller(force_refresh_ui_trigger=False, progress=gr.Progress(track_tqdm=True)): # Gradio progress tracker
417
  print(f"ui_load_data_controller called with force_refresh_ui_trigger={force_refresh_ui_trigger}")
418
  status_msg_ui = "Loading data..."
419
  data_info_text = ""
420
  current_df = pd.DataFrame()
421
  load_success_flag = False
422
- data_as_of_date_display = "N/A"
423
 
424
  try:
425
- # Pass gr.Progress.tqdm to load_models_data if it's a Gradio call
426
  current_df, load_success_flag, status_msg_from_load = load_models_data(
427
  force_refresh=force_refresh_ui_trigger, tqdm_cls=progress.tqdm if progress else tqdm
428
  )
429
 
430
  if load_success_flag:
 
 
 
431
  if force_refresh_ui_trigger: # Data was just fetched by Gradio
432
  data_as_of_date_display = pd.Timestamp.now(tz='UTC').strftime('%B %d, %Y, %H:%M:%S %Z')
433
  # If loaded from pre-processed parquet, check for its timestamp column
434
- elif 'data_download_timestamp' in current_df.columns and not current_df.empty and pd.notna(current_df['data_download_timestamp'].iloc[0]):
435
- timestamp_from_parquet = pd.to_datetime(current_df['data_download_timestamp'].iloc[0])
436
- if timestamp_from_parquet.tzinfo is None: # If no timezone, assume UTC from preprocessor
437
- timestamp_from_parquet = timestamp_from_parquet.tz_localize('UTC')
438
- data_as_of_date_display = timestamp_from_parquet.strftime('%B %d, %Y, %H:%M:%S %Z')
439
- else: # Pre-processed data but no timestamp column or it's NaT
440
- data_as_of_date_display = "Pre-processed (date unavailable)"
441
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
442
  # Build data info string
443
  size_dist_lines = []
444
  if 'size_category' in current_df.columns:
@@ -466,13 +467,13 @@ with gr.Blocks(title="HuggingFace Model Explorer") as demo:
466
  status_msg_ui = "Data loaded successfully. Ready to generate plot."
467
  else: # load_success_flag is False
468
  data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
469
- status_msg_ui = status_msg_from_load # Pass error message from load_models_data
470
 
471
  except Exception as e:
472
  status_msg_ui = f"An unexpected error occurred in ui_load_data_controller: {str(e)}"
473
  data_info_text = f"### Critical Error\n- {status_msg_ui}"
474
- print(f"Critical error in ui_load_data_controller: {e}")
475
- load_success_flag = False # Ensure this is false on error
476
 
477
  return current_df, load_success_flag, data_info_text, status_msg_ui
478
 
@@ -481,18 +482,14 @@ with gr.Blocks(title="HuggingFace Model Explorer") as demo:
481
  if df_current_models is None or df_current_models.empty:
482
  empty_fig = create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded")
483
  error_msg = "Model data is not loaded or is empty. Please load or refresh data first."
484
- gr.Warning(error_msg) # Display a Gradio warning
485
  return empty_fig, error_msg
486
 
487
  tag_to_use = tag_choice if filter_type == "Tag Filter" else None
488
  pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
489
- size_to_use = size_choice if size_choice != "None" else None # Handle "None" string
490
  orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()] if skip_orgs_input else []
491
 
492
- # if 'has_robot' in df_current_models.columns:
493
- # robot_count_before_treemap = df_current_models['has_robot'].sum()
494
- # print(f"DIAGNOSTIC (ui_generate_plot_controller): df_current_models entering make_treemap_data has {robot_count_before_treemap} 'has_robot' models.")
495
-
496
  treemap_df = make_treemap_data(df_current_models, metric_choice, k_orgs, tag_to_use, pipeline_to_use, size_to_use, orgs_to_skip)
497
 
498
  title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
@@ -502,33 +499,29 @@ with gr.Blocks(title="HuggingFace Model Explorer") as demo:
502
  if treemap_df.empty:
503
  plot_stats_md = "No data matches the selected filters. Try adjusting your filters."
504
  else:
505
- total_items_in_plot = len(treemap_df['id'].unique()) # Count unique models in plot
506
- total_value_in_plot = treemap_df[metric_choice].sum() # Sum of metric in plot
507
  plot_stats_md = (f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}")
508
 
509
  return plotly_fig, plot_stats_md
510
 
511
- # --- Event Handlers ---
512
- # Initial data load on app start
513
  demo.load(
514
  fn=lambda progress=gr.Progress(track_tqdm=True): ui_load_data_controller(force_refresh_ui_trigger=False, progress=progress),
515
- inputs=[], # No inputs for initial load
516
  outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
517
  )
518
 
519
- # Refresh data button
520
  refresh_data_button.click(
521
  fn=lambda progress=gr.Progress(track_tqdm=True): ui_load_data_controller(force_refresh_ui_trigger=True, progress=progress),
522
  inputs=[],
523
  outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
524
  )
525
 
526
- # Generate plot button
527
  generate_plot_button.click(
528
  fn=ui_generate_plot_controller,
529
  inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
530
  size_filter_dropdown, top_k_slider, skip_orgs_textbox, models_data_state],
531
- outputs=[plot_output, status_message_md] # Update plot and status message
532
  )
533
 
534
  if __name__ == "__main__":
@@ -537,5 +530,4 @@ if __name__ == "__main__":
537
  print("It is highly recommended to run the preprocessing script (preprocess.py) first.")
538
  else:
539
  print(f"Found pre-processed data file: '{PROCESSED_PARQUET_FILE_PATH}'.")
540
- demo.launch()
541
- # --- END OF FILE app.py ---
 
 
 
1
  import json
2
  import gradio as gr
3
  import pandas as pd
 
160
 
161
 
162
  def load_models_data(force_refresh=False, tqdm_cls=None): # tqdm_cls for Gradio progress
 
163
  if tqdm_cls is None: tqdm_cls = tqdm # Default to standard tqdm if None
164
  overall_start_time = time.time()
165
  print(f"Gradio load_models_data called with force_refresh={force_refresh}")
 
239
  if output_filesize_col_name in df_raw.columns and pd.api.types.is_numeric_dtype(df_raw[output_filesize_col_name]):
240
  df[output_filesize_col_name] = pd.to_numeric(df_raw[output_filesize_col_name], errors='coerce').fillna(0.0)
241
  elif 'safetensors' in df.columns:
 
242
  safetensors_iter = df['safetensors']
243
+ if tqdm_cls and tqdm_cls != tqdm:
244
  safetensors_iter = tqdm_cls(df['safetensors'], desc="Extracting model sizes (GB)", unit="row")
245
+ elif tqdm_cls == tqdm:
246
  safetensors_iter = tqdm(df['safetensors'], desc="Extracting model sizes (GB)", unit="row", leave=False)
247
 
248
  df[output_filesize_col_name] = [extract_model_size(s) for s in safetensors_iter]
 
262
  else: return "Small (<1GB)" # Default
263
  df['size_category'] = df[output_filesize_col_name].apply(get_size_category_gradio)
264
 
 
265
  df['tags'] = process_tags_for_series(df['tags'], tqdm_cls=tqdm_cls)
266
 
267
  df['temp_tags_joined'] = df['tags'].apply(
 
288
  df['is_biomed'] = df['has_bio'] | df['has_med']
289
  df['organization'] = df['id'].apply(extract_org_from_id)
290
 
 
291
  if 'safetensors' in df.columns and \
292
  not (output_filesize_col_name in df_raw.columns and pd.api.types.is_numeric_dtype(df_raw[output_filesize_col_name])):
293
  df = df.drop(columns=['safetensors'], errors='ignore')
 
304
  return df, True, final_msg
305
 
306
 
 
307
  def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, size_filter=None, skip_orgs=None):
308
  if df is None or df.empty: return pd.DataFrame()
309
  filtered_df = df.copy()
 
313
 
314
  if 'has_robot' in filtered_df.columns:
315
  initial_robot_count = filtered_df['has_robot'].sum()
 
 
 
 
316
  if tag_filter and tag_filter in col_map:
317
  target_col = col_map[tag_filter]
318
  if target_col in filtered_df.columns:
 
 
 
319
  filtered_df = filtered_df[filtered_df[target_col]]
 
 
320
  else:
321
  print(f"Warning: Tag filter column '{col_map[tag_filter]}' not found in DataFrame.")
322
  if pipeline_filter:
 
335
  else:
336
  print("Warning: 'organization' column not found for filtering.")
337
  if filtered_df.empty: return pd.DataFrame()
 
338
  if count_by not in filtered_df.columns or not pd.api.types.is_numeric_dtype(filtered_df[count_by]):
 
339
  filtered_df[count_by] = pd.to_numeric(filtered_df.get(count_by), errors="coerce").fillna(0.0)
340
 
341
+ org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first')
342
  top_orgs_list = org_totals.index.tolist()
343
  treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy()
344
+ treemap_data["root"] = "models"
345
+ treemap_data[count_by] = pd.to_numeric(treemap_data[count_by], errors="coerce").fillna(0.0)
346
  return treemap_data
347
 
348
  def create_treemap(treemap_data, count_by, title=None):
349
  if treemap_data.empty:
350
+ fig = px.treemap(names=["No data matches filters"], parents=[""], values=[1])
351
  fig.update_layout(title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25))
352
  return fig
353
  fig = px.treemap(
354
  treemap_data, path=["root", "organization", "id"], values=count_by,
355
  title=title or f"HuggingFace Models - {count_by.capitalize()} by Organization",
356
+ color_discrete_sequence=px.colors.qualitative.Plotly
357
  )
358
  fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
359
  fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
360
  return fig
361
 
 
362
  with gr.Blocks(title="HuggingFace Model Explorer") as demo:
363
  models_data_state = gr.State(pd.DataFrame())
364
+ loading_complete_state = gr.State(False)
365
 
366
  with gr.Row():
367
  gr.Markdown("# HuggingFace Models TreeMap Visualization")
368
  with gr.Row():
369
+ with gr.Column(scale=1):
370
  count_by_dropdown = gr.Dropdown(label="Metric", choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")], value="downloads")
371
  filter_choice_radio = gr.Radio(label="Filter Type", choices=["None", "Tag Filter", "Pipeline Filter"], value="None")
372
  tag_filter_dropdown = gr.Dropdown(label="Select Tag", choices=TAG_FILTER_CHOICES, value=None, visible=False)
373
  pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False)
374
  size_filter_dropdown = gr.Dropdown(label="Model Size Filter", choices=["None"] + list(MODEL_SIZE_RANGES.keys()), value="None")
375
  top_k_slider = gr.Slider(label="Number of Top Organizations", minimum=5, maximum=50, value=25, step=5)
376
+ skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski")
377
 
378
+ generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)
379
  refresh_data_button = gr.Button(value="Refresh Data from Hugging Face", variant="secondary")
380
 
381
+ with gr.Column(scale=3):
382
  plot_output = gr.Plot()
383
+ status_message_md = gr.Markdown("Initializing...")
384
+ data_info_md = gr.Markdown("")
385
 
 
386
  def _update_button_interactivity(is_loaded_flag):
387
  return gr.update(interactive=is_loaded_flag)
388
  loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button)
389
 
 
390
  def _toggle_filters_visibility(choice):
391
  return gr.update(visible=choice == "Tag Filter"), gr.update(visible=choice == "Pipeline Filter")
392
  filter_choice_radio.change(fn=_toggle_filters_visibility, inputs=filter_choice_radio, outputs=[tag_filter_dropdown, pipeline_filter_dropdown])
393
 
394
 
395
+ def ui_load_data_controller(force_refresh_ui_trigger=False, progress=gr.Progress(track_tqdm=True)):
396
  print(f"ui_load_data_controller called with force_refresh_ui_trigger={force_refresh_ui_trigger}")
397
  status_msg_ui = "Loading data..."
398
  data_info_text = ""
399
  current_df = pd.DataFrame()
400
  load_success_flag = False
401
+ # data_as_of_date_display = "N/A" # Will be set inside the logic
402
 
403
  try:
 
404
  current_df, load_success_flag, status_msg_from_load = load_models_data(
405
  force_refresh=force_refresh_ui_trigger, tqdm_cls=progress.tqdm if progress else tqdm
406
  )
407
 
408
  if load_success_flag:
409
+ # Default value for data_as_of_date_display
410
+ data_as_of_date_display = "Pre-processed (date unavailable or invalid)"
411
+
412
  if force_refresh_ui_trigger: # Data was just fetched by Gradio
413
  data_as_of_date_display = pd.Timestamp.now(tz='UTC').strftime('%B %d, %Y, %H:%M:%S %Z')
414
  # If loaded from pre-processed parquet, check for its timestamp column
415
+ elif 'data_download_timestamp' in current_df.columns and not current_df.empty:
416
+ try:
417
+ # Step 1: Safely get the value from the DataFrame's first row for the timestamp column
418
+ raw_val_from_df = current_df['data_download_timestamp'].iloc[0]
419
+
420
+ # Step 2: Process if raw_val_from_df is a list/array
421
+ scalar_timestamp_val = None
422
+ if isinstance(raw_val_from_df, (list, tuple, np.ndarray)):
423
+ if len(raw_val_from_df) > 0:
424
+ scalar_timestamp_val = raw_val_from_df[0]
425
+ else:
426
+ scalar_timestamp_val = raw_val_from_df
427
+
428
+ # Step 3: Check for NA and convert the scalar value to datetime
429
+ if pd.notna(scalar_timestamp_val):
430
+ dt_obj = pd.to_datetime(scalar_timestamp_val)
431
+ if pd.notna(dt_obj):
432
+ if dt_obj.tzinfo is None:
433
+ dt_obj = dt_obj.tz_localize('UTC')
434
+ data_as_of_date_display = dt_obj.strftime('%B %d, %Y, %H:%M:%S %Z')
435
+
436
+ except IndexError:
437
+ print(f"DEBUG: IndexError encountered while processing 'data_download_timestamp'. DF empty: {current_df.empty}")
438
+ if 'data_download_timestamp' in current_df.columns and not current_df.empty:
439
+ print(f"DEBUG: Head of 'data_download_timestamp': {str(current_df['data_download_timestamp'].head(1))}") # Ensure string conversion for print
440
+ except Exception as e_ts_proc:
441
+ print(f"Error processing 'data_download_timestamp' from parquet: {e_ts_proc}")
442
+
443
  # Build data info string
444
  size_dist_lines = []
445
  if 'size_category' in current_df.columns:
 
467
  status_msg_ui = "Data loaded successfully. Ready to generate plot."
468
  else: # load_success_flag is False
469
  data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
470
+ status_msg_ui = status_msg_from_load
471
 
472
  except Exception as e:
473
  status_msg_ui = f"An unexpected error occurred in ui_load_data_controller: {str(e)}"
474
  data_info_text = f"### Critical Error\n- {status_msg_ui}"
475
+ print(f"Critical error in ui_load_data_controller: {e}") # This is the original error print
476
+ load_success_flag = False
477
 
478
  return current_df, load_success_flag, data_info_text, status_msg_ui
479
 
 
482
  if df_current_models is None or df_current_models.empty:
483
  empty_fig = create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded")
484
  error_msg = "Model data is not loaded or is empty. Please load or refresh data first."
485
+ gr.Warning(error_msg)
486
  return empty_fig, error_msg
487
 
488
  tag_to_use = tag_choice if filter_type == "Tag Filter" else None
489
  pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
490
+ size_to_use = size_choice if size_choice != "None" else None
491
  orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()] if skip_orgs_input else []
492
 
 
 
 
 
493
  treemap_df = make_treemap_data(df_current_models, metric_choice, k_orgs, tag_to_use, pipeline_to_use, size_to_use, orgs_to_skip)
494
 
495
  title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
 
499
  if treemap_df.empty:
500
  plot_stats_md = "No data matches the selected filters. Try adjusting your filters."
501
  else:
502
+ total_items_in_plot = len(treemap_df['id'].unique())
503
+ total_value_in_plot = treemap_df[metric_choice].sum()
504
  plot_stats_md = (f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}")
505
 
506
  return plotly_fig, plot_stats_md
507
 
 
 
508
  demo.load(
509
  fn=lambda progress=gr.Progress(track_tqdm=True): ui_load_data_controller(force_refresh_ui_trigger=False, progress=progress),
510
+ inputs=[],
511
  outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
512
  )
513
 
 
514
  refresh_data_button.click(
515
  fn=lambda progress=gr.Progress(track_tqdm=True): ui_load_data_controller(force_refresh_ui_trigger=True, progress=progress),
516
  inputs=[],
517
  outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
518
  )
519
 
 
520
  generate_plot_button.click(
521
  fn=ui_generate_plot_controller,
522
  inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
523
  size_filter_dropdown, top_k_slider, skip_orgs_textbox, models_data_state],
524
+ outputs=[plot_output, status_message_md]
525
  )
526
 
527
  if __name__ == "__main__":
 
530
  print("It is highly recommended to run the preprocessing script (preprocess.py) first.")
531
  else:
532
  print(f"Found pre-processed data file: '{PROCESSED_PARQUET_FILE_PATH}'.")
533
+ demo.launch()