fairchem_leaderboard / evaluator.py
mshuaibi's picture
better error handling
7c3b81b
import logging
from pathlib import Path
from typing import Dict, List, Tuple
import numpy as np
import torch
import json
from fairchem.data.omol.modules.evaluator import (
ligand_pocket,
ligand_strain,
geom_conformers,
protonation_energies,
unoptimized_ie_ea,
distance_scaling,
unoptimized_spin_gap,
)
class SubmissionLoadError(Exception):
"""Raised if unable to load the submission file."""
OMOL_EVAL_FUNCTIONS = {
"Ligand pocket": ligand_pocket,
"Ligand strain": ligand_strain,
"Conformers": geom_conformers,
"Protonation": protonation_energies,
"IE_EA": unoptimized_ie_ea,
"Distance scaling": distance_scaling,
"Spin gap": unoptimized_spin_gap,
}
OMOL_DATA_ID_MAPPING = {
"metal_complexes": ["metal_complexes"],
"electrolytes": ["elytes"],
"biomolecules": ["biomolecules"],
"neutral_organics": ["ani2x", "orbnet_denali", "geom_orca6", "trans1x", "rgd"],
}
def reorder(ref: np.ndarray, to_reorder: np.ndarray) -> np.ndarray:
"""
Get the ordering so that `to_reorder[ordering]` == ref.
eg:
ref = [c, a, b]
to_reorder = [b, a, c]
order = reorder(ref, to_reorder) # [2, 1, 0]
assert ref == to_reorder[order]
Parameters
----------
ref : np.ndarray
Reference array. Must not contains duplicates.
to_reorder : np.ndarray
Array to re-order. Must not contains duplicates.
Items must be the same as in `ref`.
Returns
-------
np.ndarray
the ordering to apply on `to_reorder`
"""
assert len(ref) == len(set(ref))
assert len(to_reorder) == len(set(to_reorder))
assert set(ref) == set(to_reorder)
item_to_idx = {item: idx for idx, item in enumerate(to_reorder)}
return np.array([item_to_idx[item] for item in ref])
def get_order(path_submission: Path, path_annotations: Path):
try:
with np.load(path_submission) as data:
submission_ids = data["ids"]
except Exception as e:
raise SubmissionLoadError(
f"Error loading submission file. 'ids' must not be object types."
) from e
with np.load(path_annotations, allow_pickle=True) as data:
annotations_ids = data["ids"]
# Use sets for faster comparison
submission_set = set(submission_ids)
annotations_set = set(annotations_ids)
if submission_set != annotations_set:
missing_ids = annotations_set - submission_set
unexpected_ids = submission_set - annotations_set
details = (
f"{len(missing_ids)} missing IDs: ({list(missing_ids)[:3]}, ...)\n"
f"{len(unexpected_ids)} unexpected IDs: ({list(unexpected_ids)[:3]}, ...)"
)
raise Exception(f"IDs don't match.\n{details}")
assert len(submission_ids) == len(
submission_set
), "Duplicate IDs found in submission."
return reorder(annotations_ids, submission_ids)
def s2ef_metrics(
annotations_path: Path,
submission_filename: Path,
subsets: list = ["all"],
) -> Dict[str, float]:
order = get_order(submission_filename, annotations_path)
try:
with np.load(submission_filename) as data:
forces = data["forces"]
energy = data["energy"][order]
forces = np.array(
np.split(forces, np.cumsum(data["natoms"])[:-1]), dtype=object
)[order]
except Exception as e:
raise SubmissionLoadError(
f"Error loading submission data. Make sure you concatenated your forces and there are no object types."
) from e
if len(set(np.where(np.isinf(energy))[0])) != 0:
inf_energy_ids = list(set(np.where(np.isinf(energy))[0]))
raise Exception(
f"Inf values found in `energy` for IDs: ({inf_energy_ids[:3]}, ...)"
)
with np.load(annotations_path, allow_pickle=True) as data:
target_forces = data["forces"]
target_energy = data["energy"]
target_data_ids = data["data_ids"]
metrics = {}
for subset in subsets:
if subset == "all":
subset_mask = np.ones(len(target_data_ids), dtype=bool)
else:
allowed_ids = set(OMOL_DATA_ID_MAPPING.get(subset, []))
subset_mask = np.array(
[data_id in allowed_ids for data_id in target_data_ids]
)
sub_energy = energy[subset_mask]
sub_target_energy = target_energy[subset_mask]
energy_mae = np.mean(np.abs(sub_target_energy - sub_energy))
metrics[f"{subset}_energy_mae"] = energy_mae
forces_mae = 0
natoms = 0
for sub_forces, sub_target_forces in zip(
forces[subset_mask], target_forces[subset_mask]
):
forces_mae += np.sum(np.abs(sub_target_forces - sub_forces))
natoms += sub_forces.shape[0]
forces_mae /= 3 * natoms
metrics[f"{subset}_forces_mae"] = forces_mae
return metrics
def omol_evaluations(
annotations_path: Path,
submission_filename: Path,
eval_type: str,
) -> Dict[str, float]:
try:
with open(submission_filename) as f:
submission_data = json.load(f)
except Exception as e:
raise SubmissionLoadError(f"Error loading submission file") from e
with open(annotations_path) as f:
annotations_data = json.load(f)
submission_entries = set(submission_data.keys())
annotation_entries = set(annotations_data.keys())
if submission_entries != annotation_entries:
missing = annotation_entries - submission_entries
unexpected = submission_entries - annotation_entries
raise ValueError(
f"Submission and annotations entries do not match.\n"
f"Missing entries in submission: {missing}\n"
f"Unexpected entries in submission: {unexpected}"
)
assert len(submission_entries) == len(
submission_data
), "Duplicate entries found in submission."
eval_fn = OMOL_EVAL_FUNCTIONS.get(eval_type)
metrics = eval_fn(annotations_data, submission_data)
return metrics
def evaluate(
annotations_path: Path,
submission_filename: Path,
eval_type: str,
):
if eval_type in ["Validation", "Test"]:
metrics = s2ef_metrics(
annotations_path,
submission_filename,
subsets=[
"all",
"metal_complexes",
"electrolytes",
"biomolecules",
"neutral_organics",
],
)
elif eval_type in OMOL_EVAL_FUNCTIONS:
metrics = omol_evaluations(
annotations_path,
submission_filename,
eval_type,
)
else:
raise ValueError(f"Unknown eval_type: {eval_type}")
return metrics