Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
bring back ieea/spin
Browse files- app.py +17 -10
- content.py +3 -3
app.py
CHANGED
|
@@ -57,8 +57,8 @@ OTHER_EVAL_TYPES = [
|
|
| 57 |
"Conformers",
|
| 58 |
"Protonation",
|
| 59 |
"Distance scaling",
|
| 60 |
-
|
| 61 |
-
|
| 62 |
]
|
| 63 |
|
| 64 |
# All evaluation types for the dropdown
|
|
@@ -94,9 +94,9 @@ class LeaderboardData:
|
|
| 94 |
"Ligand strain": f"{target_data_dir}/ligand_strain_labels.json",
|
| 95 |
"Conformers": f"{target_data_dir}/geom_conformers_labels.json",
|
| 96 |
"Protonation": f"{target_data_dir}/protonation_energies_labels.json",
|
| 97 |
-
"IE_EA": f"{target_data_dir}/
|
| 98 |
"Distance scaling": f"{target_data_dir}/distance_scaling_labels.json",
|
| 99 |
-
"Spin gap": f"{target_data_dir}/
|
| 100 |
}
|
| 101 |
|
| 102 |
self.result_paths = {
|
|
@@ -229,6 +229,9 @@ class LeaderboardData:
|
|
| 229 |
eval_columns = LEADERBOARD_COLUMNS[split]
|
| 230 |
filtered_columns = PRE_COLUMN_NAMES + eval_columns + POST_COLUMN_NAMES
|
| 231 |
df = pd.DataFrame(local_df)
|
|
|
|
|
|
|
|
|
|
| 232 |
avail_columns = list(df.columns)
|
| 233 |
missing_columns = list(set(filtered_columns) - set(avail_columns))
|
| 234 |
df[missing_columns] = ""
|
|
@@ -253,8 +256,8 @@ LEADERBOARD_COLUMNS = {
|
|
| 253 |
"Conformers": ["deltaE_mae", "ensemble_rmsd"],
|
| 254 |
"Protonation": ["deltaE_mae", "rmsd"],
|
| 255 |
"Distance scaling": ["lr_ddE_mae", "lr_ddF_mae", "sr_ddE_mae", "sr_ddF_mae"],
|
| 256 |
-
|
| 257 |
-
|
| 258 |
}
|
| 259 |
|
| 260 |
COLUMN_MAPPING = {
|
|
@@ -400,16 +403,17 @@ def add_new_eval(
|
|
| 400 |
|
| 401 |
success_str = f"β
Model {model} is successfully evaluated and stored in our database.\nPlease wait an hour and refresh the leaderboard to see your results displayed."
|
| 402 |
yield success_str
|
| 403 |
-
|
| 404 |
except Exception as e:
|
| 405 |
print(f"Error during submission: {e}")
|
| 406 |
yield (
|
| 407 |
f"An error occurred, please open a discussion/issue if you continue to have submission issues.\n{e}"
|
| 408 |
)
|
| 409 |
|
|
|
|
| 410 |
def transform_time(date_str):
|
| 411 |
-
dt = datetime.strptime(date_str,
|
| 412 |
-
return dt.strftime(
|
|
|
|
| 413 |
|
| 414 |
def create_dataframe_tab(
|
| 415 |
tab_name: str,
|
|
@@ -639,7 +643,10 @@ def create_interface() -> gr.Blocks:
|
|
| 639 |
gr.Markdown("## Evaluations", elem_classes="markdown-text")
|
| 640 |
with gr.Row():
|
| 641 |
create_evaluation_tabs(results_dfs)
|
| 642 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
| 643 |
|
| 644 |
# S2EF Results tabs
|
| 645 |
gr.Markdown("## S2EF", elem_classes="markdown-text")
|
|
|
|
| 57 |
"Conformers",
|
| 58 |
"Protonation",
|
| 59 |
"Distance scaling",
|
| 60 |
+
"IE_EA",
|
| 61 |
+
"Spin gap",
|
| 62 |
]
|
| 63 |
|
| 64 |
# All evaluation types for the dropdown
|
|
|
|
| 94 |
"Ligand strain": f"{target_data_dir}/ligand_strain_labels.json",
|
| 95 |
"Conformers": f"{target_data_dir}/geom_conformers_labels.json",
|
| 96 |
"Protonation": f"{target_data_dir}/protonation_energies_labels.json",
|
| 97 |
+
"IE_EA": f"{target_data_dir}/ieea_labels.json",
|
| 98 |
"Distance scaling": f"{target_data_dir}/distance_scaling_labels.json",
|
| 99 |
+
"Spin gap": f"{target_data_dir}/spingap_labels.json",
|
| 100 |
}
|
| 101 |
|
| 102 |
self.result_paths = {
|
|
|
|
| 229 |
eval_columns = LEADERBOARD_COLUMNS[split]
|
| 230 |
filtered_columns = PRE_COLUMN_NAMES + eval_columns + POST_COLUMN_NAMES
|
| 231 |
df = pd.DataFrame(local_df)
|
| 232 |
+
|
| 233 |
+
# Filter to only show results after 09/2025, keep v1 for record keeping
|
| 234 |
+
df = df[df["Submission date"] > "2025-09"]
|
| 235 |
avail_columns = list(df.columns)
|
| 236 |
missing_columns = list(set(filtered_columns) - set(avail_columns))
|
| 237 |
df[missing_columns] = ""
|
|
|
|
| 256 |
"Conformers": ["deltaE_mae", "ensemble_rmsd"],
|
| 257 |
"Protonation": ["deltaE_mae", "rmsd"],
|
| 258 |
"Distance scaling": ["lr_ddE_mae", "lr_ddF_mae", "sr_ddE_mae", "sr_ddF_mae"],
|
| 259 |
+
"IE_EA": ["deltaE_mae", "deltaF_mae"],
|
| 260 |
+
"Spin gap": ["deltaE_mae", "deltaF_mae"],
|
| 261 |
}
|
| 262 |
|
| 263 |
COLUMN_MAPPING = {
|
|
|
|
| 403 |
|
| 404 |
success_str = f"β
Model {model} is successfully evaluated and stored in our database.\nPlease wait an hour and refresh the leaderboard to see your results displayed."
|
| 405 |
yield success_str
|
|
|
|
| 406 |
except Exception as e:
|
| 407 |
print(f"Error during submission: {e}")
|
| 408 |
yield (
|
| 409 |
f"An error occurred, please open a discussion/issue if you continue to have submission issues.\n{e}"
|
| 410 |
)
|
| 411 |
|
| 412 |
+
|
| 413 |
def transform_time(date_str):
|
| 414 |
+
dt = datetime.strptime(date_str, "%Y-%m-%d-%H:%M")
|
| 415 |
+
return dt.strftime("%Y-%m-%d")
|
| 416 |
+
|
| 417 |
|
| 418 |
def create_dataframe_tab(
|
| 419 |
tab_name: str,
|
|
|
|
| 643 |
gr.Markdown("## Evaluations", elem_classes="markdown-text")
|
| 644 |
with gr.Row():
|
| 645 |
create_evaluation_tabs(results_dfs)
|
| 646 |
+
gr.Markdown(
|
| 647 |
+
"**Overview rankings based on average rank across all evaluations",
|
| 648 |
+
elem_classes="markdown-text",
|
| 649 |
+
)
|
| 650 |
|
| 651 |
# S2EF Results tabs
|
| 652 |
gr.Markdown("## S2EF", elem_classes="markdown-text")
|
content.py
CHANGED
|
@@ -7,7 +7,7 @@ INTRODUCTION_TEXT = """
|
|
| 7 |
|
| 8 |
This space hosts comprehensive leaderboards across different chemical domains including molecules, catalysts, and materials.
|
| 9 |
|
| 10 |
-
*Note: Leaderboards previously hosted on EvalAI (such as [OC20](https://eval.ai/web/challenges/challenge-page/712/overview)) will be migrated here in the future.*
|
| 11 |
|
| 12 |
## 𧬠OMol25
|
| 13 |
|
|
@@ -26,8 +26,8 @@ This leaderboard evaluates performance on the **Open Molecules 2025 (OMol25)** d
|
|
| 26 |
- **Conformers:** Identifying the lowest energy conformer
|
| 27 |
- **Protonation:** Energy differences between protonated structures (proxy for pKa prediction)
|
| 28 |
- **Distance Scaling:** Short and long range intermolecular interactions
|
| 29 |
-
- **
|
| 30 |
-
- **
|
| 31 |
|
| 32 |
## π Getting Started
|
| 33 |
|
|
|
|
| 7 |
|
| 8 |
This space hosts comprehensive leaderboards across different chemical domains including molecules, catalysts, and materials.
|
| 9 |
|
| 10 |
+
*Note: Leaderboards previously hosted on EvalAI (such as [OC20](https://eval.ai/web/challenges/challenge-page/712/overview)) will be migrated here in the near future.*
|
| 11 |
|
| 12 |
## 𧬠OMol25
|
| 13 |
|
|
|
|
| 26 |
- **Conformers:** Identifying the lowest energy conformer
|
| 27 |
- **Protonation:** Energy differences between protonated structures (proxy for pKa prediction)
|
| 28 |
- **Distance Scaling:** Short and long range intermolecular interactions
|
| 29 |
+
- **IE/EA:** Ionization energy and electron affinity
|
| 30 |
+
- **Spin Gap:** Energy differences between varying spin states
|
| 31 |
|
| 32 |
## π Getting Started
|
| 33 |
|