File size: 5,471 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

_base_ = [
    '../_base_/default_runtime.py', '../_base_/schedules/schedule_1x.py',
    '../_base_/datasets/coco_detection.py', './rtmdet_tta.py'
]
model = dict(
    type='RTMDet',
    data_preprocessor=dict(
        type='DetDataPreprocessor',
        mean=[103.53, 116.28, 123.675],
        std=[57.375, 57.12, 58.395],
        bgr_to_rgb=False,
        batch_augments=None),
    backbone=dict(
        type='CSPNeXt',
        arch='P5',
        expand_ratio=0.5,
        deepen_factor=1,
        widen_factor=1,
        channel_attention=True,
        norm_cfg=dict(type='SyncBN'),
        act_cfg=dict(type='SiLU', inplace=True)),
    neck=dict(
        type='CSPNeXtPAFPN',
        in_channels=[256, 512, 1024],
        out_channels=256,
        num_csp_blocks=3,
        expand_ratio=0.5,
        norm_cfg=dict(type='SyncBN'),
        act_cfg=dict(type='SiLU', inplace=True)),
    bbox_head=dict(
        type='RTMDetSepBNHead',
        num_classes=80,
        in_channels=256,
        stacked_convs=2,
        feat_channels=256,
        anchor_generator=dict(
            type='MlvlPointGenerator', offset=0, strides=[8, 16, 32]),
        bbox_coder=dict(type='DistancePointBBoxCoder'),
        loss_cls=dict(
            type='QualityFocalLoss',
            use_sigmoid=True,
            beta=2.0,
            loss_weight=1.0),
        loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
        with_objectness=False,
        exp_on_reg=True,
        share_conv=True,
        pred_kernel_size=1,
        norm_cfg=dict(type='SyncBN'),
        act_cfg=dict(type='SiLU', inplace=True)),
    train_cfg=dict(
        assigner=dict(type='DynamicSoftLabelAssigner', topk=13),
        allowed_border=-1,
        pos_weight=-1,
        debug=False),
    test_cfg=dict(
        nms_pre=30000,
        min_bbox_size=0,
        score_thr=0.001,
        nms=dict(type='nms', iou_threshold=0.65),
        max_per_img=300),
)

train_pipeline = [
    dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='CachedMosaic', img_scale=(640, 640), pad_val=114.0),
    dict(
        type='RandomResize',
        scale=(1280, 1280),
        ratio_range=(0.1, 2.0),
        keep_ratio=True),
    dict(type='RandomCrop', crop_size=(640, 640)),
    dict(type='YOLOXHSVRandomAug'),
    dict(type='RandomFlip', prob=0.5),
    dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
    dict(
        type='CachedMixUp',
        img_scale=(640, 640),
        ratio_range=(1.0, 1.0),
        max_cached_images=20,
        pad_val=(114, 114, 114)),
    dict(type='PackDetInputs')
]

train_pipeline_stage2 = [
    dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(
        type='RandomResize',
        scale=(640, 640),
        ratio_range=(0.1, 2.0),
        keep_ratio=True),
    dict(type='RandomCrop', crop_size=(640, 640)),
    dict(type='YOLOXHSVRandomAug'),
    dict(type='RandomFlip', prob=0.5),
    dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
    dict(type='PackDetInputs')
]

test_pipeline = [
    dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
    dict(type='Resize', scale=(640, 640), keep_ratio=True),
    dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(
        type='PackDetInputs',
        meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                   'scale_factor'))
]

train_dataloader = dict(
    batch_size=32,
    num_workers=10,
    batch_sampler=None,
    pin_memory=True,
    dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(
    batch_size=5, num_workers=10, dataset=dict(pipeline=test_pipeline))
test_dataloader = val_dataloader

max_epochs = 300
stage2_num_epochs = 20
base_lr = 0.004
interval = 10

train_cfg = dict(
    max_epochs=max_epochs,
    val_interval=interval,
    dynamic_intervals=[(max_epochs - stage2_num_epochs, 1)])

val_evaluator = dict(proposal_nums=(100, 1, 10))
test_evaluator = val_evaluator

# optimizer
optim_wrapper = dict(
    _delete_=True,
    type='OptimWrapper',
    optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05),
    paramwise_cfg=dict(
        norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))

# learning rate
param_scheduler = [
    dict(
        type='LinearLR',
        start_factor=1.0e-5,
        by_epoch=False,
        begin=0,
        end=1000),
    dict(
        # use cosine lr from 150 to 300 epoch
        type='CosineAnnealingLR',
        eta_min=base_lr * 0.05,
        begin=max_epochs // 2,
        end=max_epochs,
        T_max=max_epochs // 2,
        by_epoch=True,
        convert_to_iter_based=True),
]

# hooks
default_hooks = dict(
    checkpoint=dict(
        interval=interval,
        max_keep_ckpts=3  # only keep latest 3 checkpoints
    ))
custom_hooks = [
    dict(
        type='EMAHook',
        ema_type='ExpMomentumEMA',
        momentum=0.0002,
        update_buffers=True,
        priority=49),
    dict(
        type='PipelineSwitchHook',
        switch_epoch=max_epochs - stage2_num_epochs,
        switch_pipeline=train_pipeline_stage2)
]