Spaces:
Running
Running
import os | |
from langchain_community.vectorstores.pinecone import Pinecone | |
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings | |
from langchain.retrievers import ContextualCompressionRetriever | |
from langchain.retrievers.document_compressors import FlashrankRerank | |
from langchain_core.tools import tool | |
from langchain.retrievers.multi_query import MultiQueryRetriever | |
from apps.agent.multi_query_chain import llm_chain | |
from apps.agent.constant import INDEX_NAME_WEWEB, INDEX_NAME_XANO | |
embeddings = FastEmbedEmbeddings(model_name="jinaai/jina-embeddings-v2-small-en") | |
compressor = FlashrankRerank(model="ms-marco-MiniLM-L-12-v2") | |
def multiquery_retriever(index_name: str, embeddings, compressor) -> ContextualCompressionRetriever: | |
vectorstore = Pinecone.from_existing_index(embedding=embeddings, index_name=index_name) | |
retriever = vectorstore.as_retriever() | |
reranker_retriever = ContextualCompressionRetriever( | |
base_compressor=compressor, base_retriever=retriever | |
) | |
print("Initialize MultiQuery...") | |
return MultiQueryRetriever( | |
retriever=reranker_retriever, llm_chain=llm_chain, parser_key="lines" | |
) | |
retriever_xano = multiquery_retriever(INDEX_NAME_XANO, embeddings, compressor) | |
retriever_weweb = multiquery_retriever(INDEX_NAME_WEWEB, embeddings, compressor) | |
def tool_xano(query: str): | |
""" | |
Searches and returns excerpts from the Xano documentation | |
""" | |
return retriever_xano.get_relevant_documents(query) | |
def tool_weweb(query: str): | |
""" | |
Searches and returns excerpts from the Weweb documentation | |
""" | |
return retriever_weweb.get_relevant_documents(query) |