File size: 8,624 Bytes
6bba609
 
 
 
 
 
 
 
7d16ecc
 
 
6bba609
 
 
 
 
 
 
7d16ecc
6bba609
7d16ecc
 
 
6bba609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b75502
6bba609
 
 
 
 
 
 
 
6b75502
6bba609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d16ecc
6bba609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d16ecc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4d45cd
 
 
 
 
7d16ecc
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import logging
from dotenv import load_dotenv
from telegram import Update
from telegram.ext import Application, CommandHandler, MessageHandler, filters, ContextTypes
from langchain_core.prompts import ChatPromptTemplate
from langchain.chat_models import init_chat_model

from contextlib import asynccontextmanager
from fastapi import FastAPI, Request

# Setup logging
logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO)
logger = logging.getLogger(__name__)

# Load environment variables
load_dotenv()


# Initialize the model
model = None



# Refined system and user prompts
system_template = """You are a question generator bot that creates {num_questions} quiz questions for the user-specified subject, topic and language. Use the comment to adjust question style, difficulty, or specific requirements if provided (e.g., 'beginner level', 'multiple-choice only'). Generate questions based on these weighted preferences (0=lowest, 10=highest):
- Problem-Solving ({problem_solving_w}/10): Apply concepts to solve problems (e.g., coding challenges like 'Write a Python function to reverse a string' or math problems like 'Solve 2x + 3 = 7').
- Analytical Reasoning ({analytical_reasoning_w}/10): Analyze scenarios, identify patterns, or make logical deductions (e.g., 'What is the time complexity of this algorithm?' or 'Predict the outcome of this experiment').
- Conceptual Understanding ({conceptual_understanding_w}/10): Test comprehension of core concepts via explanation or interpretation (e.g., 'Explain how a hash table works' or 'Why does this chemical reaction occur?').
- Factual Recall ({factual_recall_w}/10): Specific facts or definitions, used minimally (e.g., 'Define a binary tree' or 'What is the capital of France?').

Guidelines:
1. Generate exactly {num_questions} questions in the user specified language, distributed proportionally based on weights (e.g., for weights {problem_solving_w}:{analytical_reasoning_w}:{conceptual_understanding_w}:{factual_recall_w}, allocate ~{problem_solving_w}/{sum} Problem-Solving, ~{analytical_reasoning_w}/{sum} Analytical Reasoning, ~{conceptual_understanding_w}/{sum} Conceptual Understanding, ~{factual_recall_w}/{sum} Factual Recall, where sum is the total weight).
2. . Questions must match the subject and topic, targeting intermediate difficulty unless specified in the comment.
3. Each question includes a clear question and concise answer in the specified language (<100 words).
4. Format output as:
   Q1: <question>
   A1: <answer>
   ...
5. If the subject or topic is vague or invalid, return: 'Please provide a specific subject and topic (e.g., "Computer Science, Algorithms").'
6. Ensure questions are engaging, concise, and promote learning or practical application."""

user_prompt = """Subject: {subject}
Topic: {topic}
language: {language}
Comment: {comment}"""

# Create prompt template
prompt_template = ChatPromptTemplate.from_messages([
    ("system", system_template),
    ("user", user_prompt)
])

# Default weights
weights = {
    'problem_solving_w': 10,
    'analytical_reasoning_w': 8,
    'conceptual_understanding_w': 9,
    'factual_recall_w': 1
}


async def start(update: Update, context):
    await update.message.reply_text(
        "Hi! Use /generate <subject>, <topic>\n\n"
        "Or use /generate <subject>, <topic>, <language>\n\n"
        "Or use /generate <subject>, <topic>, <language>, <number of questions>\n\n"
        "Or use /generate <subject>, <topic>, <language>, <number of questions>, <comment>\n\n"
        "To create questions with default weights \n(e.g., /generate Computer Science, Algorithms, 5, beginner level) and language (default English). Comment and number of question (default=5) is optional.\n\n\n"
        "Or use /generate <subject>, <topic>, <language>, <number of questions>, <comment>, <Problem-Solving-weight out of 10>,<Analytical Reasoning-weight out of 10>,<Conceptual Understanding-weight out of 10>,<Factual Recall-weight out of 10> to create questions with weighted preferences (0=lowest, 10=highest) \n(e.g., /generate Computer Science, Algorithms, 5, beginner level, 10,8,9,1).\n\n\n"
  )
async def generate(update: Update, context):
    logger.info(
        f"UserID: {update.effective_user.id}, Username: {update.effective_user.username or 'None'}, "
        f"ChatID: {update.effective_chat.id}, Message: {update.message.text or 'None'}"
    )
    input_text = update.message.text.replace('/generate', '').strip()
    parts = input_text.split(',')
    if len(parts) not in [2,3,4,5,9]:
        await update.message.reply_text("Please provide a subject and topic (e.g., /generate Computer Science, Algorithms).")
        return

    subject = parts[0].strip()
    topic = parts[1].strip()
    language = 'English'
    num_questions = 5
    comment = ''
    problem_solving_w = weights['problem_solving_w']
    analytical_reasoning_w = weights['analytical_reasoning_w']
    conceptual_understanding_w = weights['conceptual_understanding_w']
    factual_recall_w = weights['factual_recall_w']
    weight_sum = problem_solving_w + analytical_reasoning_w + conceptual_understanding_w + factual_recall_w

    if len(parts) > 2:
        language = parts[2].strip()
        if len(parts) > 3:
            try:
                num_questions = int(parts[3].strip())
            except (IndexError, ValueError):
                num_questions = 5
            if len(parts) > 4:
                comment = parts[4]
                if len(parts) > 5:
                    try:
                        problem_solving_w = int(parts[5].strip())
                        analytical_reasoning_w = int(parts[6].strip())
                        conceptual_understanding_w = int(parts[7].strip())
                        factual_recall_w = int(parts[8].strip())
                        weight_sum = problem_solving_w + analytical_reasoning_w + conceptual_understanding_w + factual_recall_w
                    except:
                        await update.message.reply_text("Please provide valid weights (e.g., /generate Computer Science, Algorithms, english, 5, beginner level, 10,8,9,1).")
                        return
            else:
                comment = ''
        else:
            num_questions = 5
            comment = ''


    prompt = prompt_template.invoke({
        'num_questions': num_questions,
        'subject': subject,
        'topic': topic,
        'comment': comment,
        'problem_solving_w': problem_solving_w,
        'analytical_reasoning_w': analytical_reasoning_w,
        'conceptual_understanding_w': conceptual_understanding_w,
        'factual_recall_w': factual_recall_w,
        'sum': weight_sum,
        'language': language,
    })

    try:
        await update.message.reply_text(f"Generating {num_questions} questions for {subject} and {topic}...")
        response = await model.ainvoke(prompt)
        await update.message.reply_text(f"Generated {num_questions} questions for {subject} and {topic}...")
        await update.message.reply_text(response.content, parse_mode='Markdown')
    except Exception as e:
        logger.error(f"Error invoking model: {e}")
        await update.message.reply_text("Sorry, I couldn't generate questions. Try again later!")

async def error(update: Update, context: ContextTypes.DEFAULT_TYPE):
    logger.warning(f"Update {update} caused error {context.error}")


# Initialize the bot
application = (
        Application.builder()
        .updater(None)
        .token(os.getenv('TELEGRAM_BOT_TOKEN'))  # replace <your-bot-token>
        .read_timeout(7)
        .get_updates_read_timeout(42)
        .build()
        )
@asynccontextmanager
async def lifespan(_: FastAPI):
    await application.bot.setWebhook(os.getenv('WEBHOOK_URL'))
    global model
    async with application:
        await application.start()
        model = init_chat_model("mistral-large-latest", model_provider="mistralai")
        yield
        await application.stop()
app = FastAPI(lifespan=lifespan)

@app.get("/")
async def root():
    return {"message": "QnA Generator Bot is running"}

@app.post("/webhook")
async def webhook(request: Request):
    try:
        update = Update.de_json(await request.json(), application.bot)
        await application.process_update(update)
        return {"status": "good"}
    except:
        return {"status": "bad"}
# Add handlers
application.add_handler(CommandHandler("start", start))
application.add_handler(CommandHandler("generate", generate))
application.add_error_handler(error)
# Start polling
logger.info("Bot is running...")