Spaces:
Sleeping
Sleeping
File size: 8,624 Bytes
6bba609 7d16ecc 6bba609 7d16ecc 6bba609 7d16ecc 6bba609 6b75502 6bba609 6b75502 6bba609 7d16ecc 6bba609 7d16ecc a4d45cd 7d16ecc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import os
import logging
from dotenv import load_dotenv
from telegram import Update
from telegram.ext import Application, CommandHandler, MessageHandler, filters, ContextTypes
from langchain_core.prompts import ChatPromptTemplate
from langchain.chat_models import init_chat_model
from contextlib import asynccontextmanager
from fastapi import FastAPI, Request
# Setup logging
logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO)
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
# Initialize the model
model = None
# Refined system and user prompts
system_template = """You are a question generator bot that creates {num_questions} quiz questions for the user-specified subject, topic and language. Use the comment to adjust question style, difficulty, or specific requirements if provided (e.g., 'beginner level', 'multiple-choice only'). Generate questions based on these weighted preferences (0=lowest, 10=highest):
- Problem-Solving ({problem_solving_w}/10): Apply concepts to solve problems (e.g., coding challenges like 'Write a Python function to reverse a string' or math problems like 'Solve 2x + 3 = 7').
- Analytical Reasoning ({analytical_reasoning_w}/10): Analyze scenarios, identify patterns, or make logical deductions (e.g., 'What is the time complexity of this algorithm?' or 'Predict the outcome of this experiment').
- Conceptual Understanding ({conceptual_understanding_w}/10): Test comprehension of core concepts via explanation or interpretation (e.g., 'Explain how a hash table works' or 'Why does this chemical reaction occur?').
- Factual Recall ({factual_recall_w}/10): Specific facts or definitions, used minimally (e.g., 'Define a binary tree' or 'What is the capital of France?').
Guidelines:
1. Generate exactly {num_questions} questions in the user specified language, distributed proportionally based on weights (e.g., for weights {problem_solving_w}:{analytical_reasoning_w}:{conceptual_understanding_w}:{factual_recall_w}, allocate ~{problem_solving_w}/{sum} Problem-Solving, ~{analytical_reasoning_w}/{sum} Analytical Reasoning, ~{conceptual_understanding_w}/{sum} Conceptual Understanding, ~{factual_recall_w}/{sum} Factual Recall, where sum is the total weight).
2. . Questions must match the subject and topic, targeting intermediate difficulty unless specified in the comment.
3. Each question includes a clear question and concise answer in the specified language (<100 words).
4. Format output as:
Q1: <question>
A1: <answer>
...
5. If the subject or topic is vague or invalid, return: 'Please provide a specific subject and topic (e.g., "Computer Science, Algorithms").'
6. Ensure questions are engaging, concise, and promote learning or practical application."""
user_prompt = """Subject: {subject}
Topic: {topic}
language: {language}
Comment: {comment}"""
# Create prompt template
prompt_template = ChatPromptTemplate.from_messages([
("system", system_template),
("user", user_prompt)
])
# Default weights
weights = {
'problem_solving_w': 10,
'analytical_reasoning_w': 8,
'conceptual_understanding_w': 9,
'factual_recall_w': 1
}
async def start(update: Update, context):
await update.message.reply_text(
"Hi! Use /generate <subject>, <topic>\n\n"
"Or use /generate <subject>, <topic>, <language>\n\n"
"Or use /generate <subject>, <topic>, <language>, <number of questions>\n\n"
"Or use /generate <subject>, <topic>, <language>, <number of questions>, <comment>\n\n"
"To create questions with default weights \n(e.g., /generate Computer Science, Algorithms, 5, beginner level) and language (default English). Comment and number of question (default=5) is optional.\n\n\n"
"Or use /generate <subject>, <topic>, <language>, <number of questions>, <comment>, <Problem-Solving-weight out of 10>,<Analytical Reasoning-weight out of 10>,<Conceptual Understanding-weight out of 10>,<Factual Recall-weight out of 10> to create questions with weighted preferences (0=lowest, 10=highest) \n(e.g., /generate Computer Science, Algorithms, 5, beginner level, 10,8,9,1).\n\n\n"
)
async def generate(update: Update, context):
logger.info(
f"UserID: {update.effective_user.id}, Username: {update.effective_user.username or 'None'}, "
f"ChatID: {update.effective_chat.id}, Message: {update.message.text or 'None'}"
)
input_text = update.message.text.replace('/generate', '').strip()
parts = input_text.split(',')
if len(parts) not in [2,3,4,5,9]:
await update.message.reply_text("Please provide a subject and topic (e.g., /generate Computer Science, Algorithms).")
return
subject = parts[0].strip()
topic = parts[1].strip()
language = 'English'
num_questions = 5
comment = ''
problem_solving_w = weights['problem_solving_w']
analytical_reasoning_w = weights['analytical_reasoning_w']
conceptual_understanding_w = weights['conceptual_understanding_w']
factual_recall_w = weights['factual_recall_w']
weight_sum = problem_solving_w + analytical_reasoning_w + conceptual_understanding_w + factual_recall_w
if len(parts) > 2:
language = parts[2].strip()
if len(parts) > 3:
try:
num_questions = int(parts[3].strip())
except (IndexError, ValueError):
num_questions = 5
if len(parts) > 4:
comment = parts[4]
if len(parts) > 5:
try:
problem_solving_w = int(parts[5].strip())
analytical_reasoning_w = int(parts[6].strip())
conceptual_understanding_w = int(parts[7].strip())
factual_recall_w = int(parts[8].strip())
weight_sum = problem_solving_w + analytical_reasoning_w + conceptual_understanding_w + factual_recall_w
except:
await update.message.reply_text("Please provide valid weights (e.g., /generate Computer Science, Algorithms, english, 5, beginner level, 10,8,9,1).")
return
else:
comment = ''
else:
num_questions = 5
comment = ''
prompt = prompt_template.invoke({
'num_questions': num_questions,
'subject': subject,
'topic': topic,
'comment': comment,
'problem_solving_w': problem_solving_w,
'analytical_reasoning_w': analytical_reasoning_w,
'conceptual_understanding_w': conceptual_understanding_w,
'factual_recall_w': factual_recall_w,
'sum': weight_sum,
'language': language,
})
try:
await update.message.reply_text(f"Generating {num_questions} questions for {subject} and {topic}...")
response = await model.ainvoke(prompt)
await update.message.reply_text(f"Generated {num_questions} questions for {subject} and {topic}...")
await update.message.reply_text(response.content, parse_mode='Markdown')
except Exception as e:
logger.error(f"Error invoking model: {e}")
await update.message.reply_text("Sorry, I couldn't generate questions. Try again later!")
async def error(update: Update, context: ContextTypes.DEFAULT_TYPE):
logger.warning(f"Update {update} caused error {context.error}")
# Initialize the bot
application = (
Application.builder()
.updater(None)
.token(os.getenv('TELEGRAM_BOT_TOKEN')) # replace <your-bot-token>
.read_timeout(7)
.get_updates_read_timeout(42)
.build()
)
@asynccontextmanager
async def lifespan(_: FastAPI):
await application.bot.setWebhook(os.getenv('WEBHOOK_URL'))
global model
async with application:
await application.start()
model = init_chat_model("mistral-large-latest", model_provider="mistralai")
yield
await application.stop()
app = FastAPI(lifespan=lifespan)
@app.get("/")
async def root():
return {"message": "QnA Generator Bot is running"}
@app.post("/webhook")
async def webhook(request: Request):
try:
update = Update.de_json(await request.json(), application.bot)
await application.process_update(update)
return {"status": "good"}
except:
return {"status": "bad"}
# Add handlers
application.add_handler(CommandHandler("start", start))
application.add_handler(CommandHandler("generate", generate))
application.add_error_handler(error)
# Start polling
logger.info("Bot is running...")
|