#!pip install -qqq datasets==3.5.0 import gradio as gr import torch from transformers import pipeline from datasets import load_dataset device = "cuda" if torch.cuda.is_available() else "cpu" device #from google.colab import userdata #userdata.get('llama_easyread') # map the image (description text) -> block of text # paragraph 1 # paragraph 2 # description text of image -> (pass to embedding model) -> get vector embedding | => Compute cosine similarity -> we get similarity score 0-1 (1 means the same 0 means not the same) # paragraph 1 -> (pass to embedding model) -> get vector embedding | model_id = "meta-llama/Llama-3.2-1B-Instruct" pipe = pipeline( "text-generation", model=model_id, device=device, torch_dtype=torch.bfloat16 if "cuda" in device else torch.float32, ) messages = [ {"role":"system", "content": "You're a helpful EasyRead Assistant the simplifies complex documents or content. Follow the easy read guidelines. Only provide the simiplied content, for complex terms in the simplified text, always add a footnote for definitions."} ] def add_and_generate(history, text): messages.append({"role":"user","content": text}) prompt = pipe.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # print(prompt) out = pipe(prompt, max_new_tokens=150, do_sample=True, temperature=0.7, top_p=0.9) reply = out[0]["generated_text"][len(prompt):] messages.append({"role":"assistant","content":reply}) history.append((text, reply)) return history, "" with gr.Blocks() as demo: chatbot = gr.Chatbot() txt = gr.Textbox(placeholder="Type here...") txt.submit(add_and_generate, [chatbot, txt], [chatbot, txt]) demo.launch(debug=True)