File size: 8,025 Bytes
b72fefd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#!/usr/bin/env python3
"""
Example inference script for the Multi-Head SigLIP2 Classifier from Hugging Face Hub.

Usage examples:
  # Multiple images, single text
  python example.py --image img1.png --image img2.jpg --repo fal/multihead_cls --text "an example caption"

  # N images, N texts (returns an N x N similarity matrix)
  python example.py \
    --image img1.png --image img2.jpg \
    --text "a cat" --text "a dog" --repo fal/multihead_cls

Requires: torch, transformers, huggingface_hub, Pillow, click
"""

import json
import click
import torch
from PIL import Image
from transformers import AutoProcessor
from huggingface_hub import hf_hub_download

# Local model definition replicated from training for easy inference
import torch.nn as nn
from transformers import SiglipModel
import torch.nn.functional as F

CKPT = "google/siglip-base-patch16-256"

class MultiHeadSiglipClassifier(nn.Module):
    """Dynamic multi-head classifier based on task configuration"""
    def __init__(self, task_config: dict, model_name: str = CKPT):
        super().__init__()
        self.task_config = task_config
        self.siglip = SiglipModel.from_pretrained(model_name)
        
        # Freeze SigLIP parameters
        for param in self.siglip.parameters():
            param.requires_grad = False
        
        # Create classification heads dynamically based on task config
        hidden_size = self.siglip.config.vision_config.hidden_size
        self.classification_heads = nn.ModuleDict()
        
        for task in task_config['tasks']:
            task_key = task['key']
            num_classes = len(task['labels'])
            
            # Create linear layer for this task
            head = nn.Linear(hidden_size, num_classes)
            self.classification_heads[task_key] = head

    def forward(self, pixel_values):
        # Get SigLIP image embeddings only
        combined_embeds = self.siglip.get_image_features(pixel_values=pixel_values)
        
        # Apply all classification heads
        outputs = {}
        for task_key, head in self.classification_heads.items():
            outputs[task_key] = head(combined_embeds)
        
        return outputs


def load_model_from_hf(repo_id: str):
    """Load model, processor, and task config from Hugging Face Hub"""
    # Download task configuration
    try:
        task_config_path = hf_hub_download(repo_id=repo_id, filename="task_config.json", repo_type="model")
        with open(task_config_path, 'r') as f:
            task_config = json.load(f)
    except Exception as e:
        raise RuntimeError(f"Could not load task_config.json from {repo_id}: {e}")
    
    # Load processor
    processor = AutoProcessor.from_pretrained(CKPT)
    
    # Create model with task config
    model = MultiHeadSiglipClassifier(task_config)
    
    # Load trained weights
    try:
        ckpt_path = hf_hub_download(repo_id=repo_id, filename="model.pth", repo_type="model")
        state_dict = torch.load(ckpt_path, map_location="cpu")
        model.load_state_dict(state_dict)
    except Exception as e:
        raise RuntimeError(f"Could not load model.pth from {repo_id}: {e}")
    
    model.eval()
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)
    
    return model, processor, device, task_config


def predict_batch(model, processor, device, task_config, image_paths, texts: list[str] | None = None):
    """Run predictions on a batch of images using dynamic task configuration"""
    images = [Image.open(p).convert("RGB") for p in image_paths]
    if texts is not None and len(texts) == 0:
        texts = None
    
    # Process images
    image_inputs = processor(images=images, return_tensors="pt")
    pixel_values = image_inputs["pixel_values"].to(device)
    
    with torch.no_grad():
        outputs = model(pixel_values)
        # Compute image embeddings for similarity
        image_embeds = model.siglip.get_image_features(pixel_values=pixel_values)
        image_embeds = F.normalize(image_embeds, p=2, dim=-1)

    # Prepare text inputs if provided
    text_embeds = None
    input_ids = None
    attention_mask = None
    if texts is not None:
        text_inputs = processor(text=texts, padding="max_length", return_tensors="pt")
        input_ids = text_inputs["input_ids"].to(device)
        attention_mask = text_inputs.get("attention_mask")
        attention_mask = attention_mask.to(device) if attention_mask is not None else None
        text_embeds = model.siglip.get_text_features(input_ids=input_ids, attention_mask=attention_mask)
        text_embeds = F.normalize(text_embeds, p=2, dim=-1)

    # Create task mappings
    tasks = {task['key']: task for task in task_config['tasks']}

    batch_results = []
    batch_size = pixel_values.shape[0]
    
    for i in range(batch_size):
        item = {"image": str(image_paths[i])}
        
        # Process each task dynamically
        for task_key, task_info in tasks.items():
            logits = outputs[task_key][i]
            probs = torch.softmax(logits, dim=0)
            pred_idx = torch.argmax(probs).item()
            
            if task_info['type'] == 'binary':
                # Binary classification
                item[f"{task_key}_prediction"] = task_info['labels'][pred_idx]
                item[f"{task_key}_confidence"] = float(probs[pred_idx].item())
                item[f"{task_key}_prob_yes"] = float(probs[1].item()) if len(task_info['labels']) > 1 else 0.0
                item[f"{task_key}_prob_no"] = float(probs[0].item())
                
            elif task_info['type'] == 'multi_class':
                # Multi-class classification
                item[f"{task_key}_prediction"] = task_info['labels'][pred_idx]
                item[f"{task_key}_confidence"] = float(probs[pred_idx].item())
                
                # Add probabilities for all classes
                for idx, label in enumerate(task_info['labels']):
                    item[f"{task_key}_prob_{label}"] = float(probs[idx].item())

        batch_results.append(item)

    cosine_matrix = None

    if input_ids is not None:
        # These embeds are already L2-normalized inside SigLIP forward
        cosine = torch.matmul(image_embeds, text_embeds.T)
        cosine_matrix = cosine.cpu().tolist()

    return {
        "images": [str(p) for p in image_paths],
        "texts": texts or [],
        "task_config": task_config,
        "predictions": batch_results,
        "cosine_similarity": cosine_matrix,
    }


@click.command()
@click.option("--image", "images", multiple=True, type=click.Path(exists=True, dir_okay=False, readable=True), help="Path(s) to image file(s). Can be passed multiple times.")
@click.option("--repo", default="fal/multihead_cls", show_default=True, help="Hugging Face repo id with model checkpoint.")
@click.option("--text", "texts", multiple=True, help="Text prompt(s). Can be passed multiple times to build an N x N image-text similarity matrix.")
@click.option("--show-tasks", is_flag=True, help="Show available classification tasks and exit.")
def cli(images, repo, texts, show_tasks):
    """Multi-head SigLIP2 classifier inference from Hugging Face Hub"""
    
    # Load model and task config
    model, processor, device, task_config = load_model_from_hf(repo)
    
    if show_tasks:
        click.echo("Available classification tasks:")
        for i, task in enumerate(task_config['tasks'], 1):
            click.echo(f"  {i}. {task['name']} ({task['key']})")
            click.echo(f"     Type: {task['type']}")
            click.echo(f"     Labels: {', '.join(task['labels'])}")
            click.echo(f"     Description: {task['description']}")
            click.echo()
        return
    
    if not images:
        images = ("img.png",)
    
    results = predict_batch(model, processor, device, task_config, list(images), texts=list(texts) if texts else None)
    click.echo(json.dumps(results, indent=2))


if __name__ == "__main__":
    cli()