Spaces:
No application file
No application file
File size: 11,009 Bytes
b72fefd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
#!/usr/bin/env python3
"""
Stage 2: Gemini Vision Classification
Classifies images using Google Gemini with 5 classification tasks
"""
import os
import json
from PIL import Image
from io import BytesIO
import concurrent.futures
from pathlib import Path
import time
import logging
from typing import Dict, Any
import mimetypes
import random
# Gemini SDK
from google import genai
from google.genai.errors import ServerError
from google.genai.types import (
Blob, Part, Content, GenerateContentConfig,
)
# Set up logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
GEMINI_API_KEY_FALLBACK = "AIzaSyBCgkB2nRaRNgbl06MBu1I_xHiuXSUQMHA"
def check_api_key():
"""Ensure Google API key is set for Gemini client."""
if not os.getenv('GOOGLE_API_KEY'):
# Use provided key as fallback if env not set
os.environ['GOOGLE_API_KEY'] = GEMINI_API_KEY_FALLBACK
return True
def _guess_mime_type(image_path: str) -> str:
guessed, _ = mimetypes.guess_type(image_path)
if guessed:
return guessed
try:
with Image.open(image_path) as im:
fmt = (im.format or '').lower()
if fmt in ('jpeg', 'jpg'):
return 'image/jpeg'
if fmt == 'png':
return 'image/png'
if fmt == 'webp':
return 'image/webp'
if fmt == 'gif':
return 'image/gif'
except Exception:
pass
return 'application/octet-stream'
def _gemini_call_with_retry(contents, cfg, max_attempts: int = 5):
"""Call Gemini with retries on server/errors."""
api_key = os.getenv('GOOGLE_API_KEY') or GEMINI_API_KEY_FALLBACK
for attempt in range(max_attempts):
try:
client = genai.Client(api_key=api_key)
return client.models.generate_content(
model="models/gemini-2.5-flash",
contents=contents,
config=cfg,
)
except ServerError as e:
sleep_s = (2 ** attempt) + random.random()
logger.warning(f"Gemini server error attempt {attempt+1}/{max_attempts}: {e}; retrying in {sleep_s:.1f}s")
time.sleep(sleep_s)
except Exception as e:
sleep_s = (2 ** attempt) + random.random()
logger.warning(f"Gemini error attempt {attempt+1}/{max_attempts}: {e}; retrying in {sleep_s:.1f}s")
time.sleep(sleep_s)
raise RuntimeError(f"Persistent Gemini error after {max_attempts} tries")
def classify_image_with_gemini(image_path: str, caption: str, max_retries: int = 3) -> Dict[str, Any]:
"""Use Google Gemini to classify an image with structured JSON output."""
prompt = f"""
Analyze this image with caption: "{caption}"
Please answer the following 5 classification questions and respond ONLY with valid JSON:
1. Overall Description.
2. Is the image product display / low quality advertisement / e-commerce product? Answer: "yes" or "no"
3. Is the image computer screenshot with many text overlays? Answer: "yes" or "no"
4. In what category is the image? Choose one from: "animals", "artifacts", "people", "outdoor_scenes", "illustrations", "vehicles", "food_and_beverage", "arts", "abstract", "produce_and_plants", "indoor_scenes"
5. Would you say the image is interesting? Answer: "yes" or "no"
6. Do you think the photo/image was made by a professional photographer? Answer: "yes" or "no"
IMPORTANT: Respond with ONLY a valid JSON object with these exact keys. Do not include any other text or explanation:
{{
"overall_description": "...",
"is_product_advertisement": "yes",
"is_screenshot_with_text": "no",
"category": "animals",
"is_interesting": "no",
"is_professional": "yes"
}}
"""
default_response = {
"overall_description": "...",
"is_product_advertisement": "...",
"is_screenshot_with_text": "...",
"category": "...",
"is_interesting": "...",
"is_professional": "..."
}
try:
with open(image_path, 'rb') as f:
image_bytes = f.read()
mime_type = _guess_mime_type(image_path)
image_blob = Blob(mime_type=mime_type, data=image_bytes)
user_content = Content(
role="user",
parts=[
Part(text=prompt),
Part(inline_data=image_blob),
],
)
contents = [user_content]
cfg = GenerateContentConfig(max_output_tokens=2500, temperature=0)
resp = _gemini_call_with_retry(contents, cfg, max_attempts=max_retries)
logger.debug(f"Gemini response type: {type(resp)}")
# Detailed debugging of response structure
logger.debug(f"Response.text: {getattr(resp, 'text', 'NO_TEXT_ATTR')}")
logger.debug(f"Response.candidates: {getattr(resp, 'candidates', 'NO_CANDIDATES_ATTR')}")
if hasattr(resp, 'candidates') and resp.candidates:
logger.debug(f"Number of candidates: {len(resp.candidates)}")
for i, candidate in enumerate(resp.candidates):
logger.debug(f"Candidate {i}: {candidate}")
if hasattr(candidate, 'content'):
logger.debug(f"Candidate {i} content: {candidate.content}")
if hasattr(candidate.content, 'parts'):
logger.debug(f"Candidate {i} parts: {candidate.content.parts}")
# Check for prompt_feedback which might indicate filtering
if hasattr(resp, 'prompt_feedback'):
logger.debug(f"Prompt feedback: {resp.prompt_feedback}")
# Extract text from Gemini response
content_text = ""
try:
# Try the .text property first
if hasattr(resp, 'text') and resp.text:
content_text = resp.text
logger.debug(f"Got text from .text property: {content_text[:100]}...")
else:
# Fallback: extract from candidates
if resp.candidates and len(resp.candidates) > 0:
candidate = resp.candidates[0]
if hasattr(candidate, 'content') and candidate.content:
if hasattr(candidate.content, 'parts') and candidate.content.parts:
for part in candidate.content.parts:
if hasattr(part, 'text') and part.text:
content_text += part.text
logger.debug(f"Got text from candidate part: {part.text[:100]}...")
except Exception as e:
logger.error(f"Error extracting text from Gemini response: {e}")
raise e
if not content_text:
logger.error(f"Empty response from Gemini")
return default_response
content_text = content_text.strip()
start_idx = content_text.find('{')
end_idx = content_text.rfind('}') + 1
if start_idx == -1 or end_idx == 0:
logger.error(f"No JSON found in response: {content_text}")
return default_response
json_content = content_text[start_idx:end_idx]
classification = json.loads(json_content)
required_keys = [
"overall_description",
"is_product_advertisement",
"is_screenshot_with_text",
"category",
"is_interesting",
"is_professional",
]
missing_keys = [key for key in required_keys if key not in classification]
if missing_keys:
logger.warning(f"Missing keys in classification: {missing_keys}")
for key in missing_keys:
classification[key] = default_response[key]
return classification
except json.JSONDecodeError as e:
logger.error(f"JSON parsing error: {e}")
return default_response
except Exception as e:
logger.error(f"Gemini classification error: {e}")
return default_response
def classify_single_image(metadata_file: Path) -> bool:
"""Classify a single image and save results"""
try:
# Load metadata
with open(metadata_file, 'r', encoding='utf-8') as f:
metadata = json.load(f)
idx = metadata['idx']
image_path = metadata['image_path']
caption = metadata['caption']
# Check if image exists
if not os.path.exists(image_path):
logger.error(f"Image not found: {image_path}")
return False
# Classify with Gemini
classification = classify_image_with_gemini(image_path, caption)
# Add classification to metadata
metadata['classification'] = classification
metadata['stage2_complete'] = True
# Save updated metadata
new_metadata_file = metadata_file.with_name(f'meta_{idx}_stage2.json')
with open(new_metadata_file, 'w', encoding='utf-8') as f:
json.dump(metadata, f, indent=2, ensure_ascii=False)
logger.info(f"Classified image {idx}")
return True
except Exception as e:
logger.error(f"Error classifying {metadata_file}: {e}")
return False
def classify_all_images(max_workers: int = 2):
"""Classify all downloaded images with parallel processing"""
logger.info("Starting image classification...")
# Get all metadata files
metadata_dir = Path('./data/metadata')
metadata_files = list(metadata_dir.glob('meta_*.json'))
if not metadata_files:
logger.error("No metadata files found. Run stage 1 first.")
return
successful = 0
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = [executor.submit(classify_single_image, meta_file) for meta_file in metadata_files]
for future in concurrent.futures.as_completed(futures):
if future.result():
successful += 1
# Rate limiting for API calls
time.sleep(1.0) # 1 second between API calls to avoid rate limits
logger.info(f"Successfully classified {successful}/{len(metadata_files)} images")
# Save summary
summary = {
"total_images": len(metadata_files),
"successful_classifications": successful,
"stage": "classification_complete"
}
with open('./data/stage2_summary.json', 'w') as f:
json.dump(summary, f, indent=2)
def main():
"""Main execution for Stage 2"""
logger.info("Starting Stage 2: Gemini Vision Classification...")
# Check API key
if not check_api_key():
return
# Classify images
classify_all_images(max_workers=64) # Reduced to avoid rate limits
logger.info("Stage 2 completed successfully!")
if __name__ == "__main__":
main()
|