multihead_cls / stage_1.py
cloneofsimo's picture
Upload folder using huggingface_hub
b72fefd verified
#!/usr/bin/env python3
"""
Stage 1: Data Loading and Image Downloading
Downloads and preprocesses top 2000 images from parquet file
"""
import os
import json
import requests
import pandas as pd
from PIL import Image
from io import BytesIO
import concurrent.futures
from pathlib import Path
import time
import logging
import numpy as np
from typing import Tuple
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def setup_environment():
"""Setup data directory"""
os.makedirs('./data', exist_ok=True)
os.makedirs('./data/images', exist_ok=True)
os.makedirs('./data/metadata', exist_ok=True)
return True
def load_and_sample_data(parquet_path: str, n_samples: int = 2000) -> pd.DataFrame:
"""Load parquet file and sample top N rows"""
logger.info(f"Loading data from {parquet_path}")
df = pd.read_parquet(parquet_path)
logger.info(f"Loaded {len(df)} rows, sampling top {n_samples}")
return df.head(n_samples)
def has_white_edges(img: Image.Image, threshold: int = 240) -> bool:
"""Check if image has 3 or more white edges (mean RGB > threshold)"""
try:
img_array = np.array(img)
height, width = img_array.shape[:2]
# Define edge thickness (check 5 pixels from each edge)
edge_thickness = 5
# Get edges
top_edge = img_array[:edge_thickness, :].mean(axis=(0, 1))
bottom_edge = img_array[-edge_thickness:, :].mean(axis=(0, 1))
left_edge = img_array[:, :edge_thickness].mean(axis=(0, 1))
right_edge = img_array[:, -edge_thickness:].mean(axis=(0, 1))
# Check if edge is white (all RGB channels > threshold)
edges = [top_edge, bottom_edge, left_edge, right_edge]
white_edges = sum(1 for edge in edges if np.all(edge > threshold))
return white_edges >= 3
except Exception as e:
logger.debug(f"Error checking white edges: {e}")
return False
def download_and_process_image(url: str, target_size: int = 256) -> Image.Image:
"""Download image and resize with center crop, skip if has white edges"""
try:
response = requests.get(url, timeout=10, headers={'User-Agent': 'Mozilla/5.0'})
response.raise_for_status()
img = Image.open(BytesIO(response.content)).convert('RGB')
# Check for white edges before processing
if has_white_edges(img):
logger.debug(f"Skipping image with white edges: {url}")
return None
# Resize and center crop to target_size x target_size
width, height = img.size
min_side = min(width, height)
scale = target_size / min_side
new_width = int(width * scale)
new_height = int(height * scale)
img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
# Center crop
left = (new_width - target_size) // 2
top = (new_height - target_size) // 2
right = left + target_size
bottom = top + target_size
img = img.crop((left, top, right, bottom))
# Double-check after processing
if has_white_edges(img):
logger.debug(f"Skipping processed image with white edges: {url}")
return None
return img
except Exception as e:
logger.error(f"Error downloading {url}: {e}")
return None
def process_single_image(args: Tuple[int, str, str, str]) -> bool:
"""Download and save a single image"""
idx, url, hash_val, caption = args
try:
# Download and process image
image = download_and_process_image(url)
if image is None:
logger.debug(f"Skipped image {idx} (white edges or download error)")
return False
# Save image
image_path = f'./data/images/img_{idx}.png'
image.save(image_path)
# Save metadata for next stage
metadata = {
"idx": idx,
"caption": caption,
"url": url,
"hash": hash_val,
"image_path": image_path
}
metadata_path = f'./data/metadata/meta_{idx}.json'
with open(metadata_path, 'w') as f:
json.dump(metadata, f, indent=2)
logger.info(f"Downloaded and saved image {idx}")
return True
except Exception as e:
logger.error(f"Error processing image {idx}: {e}")
return False
def download_images(df: pd.DataFrame, max_workers: int = 20):
"""Download all images with parallel processing"""
logger.info(f"Starting image download with {max_workers} workers...")
args_list = [(i, row['url'], row['hash'], row['caption'])
for i, (_, row) in enumerate(df.iterrows())]
successful = 0
skipped_white_edges = 0
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = [executor.submit(process_single_image, args) for args in args_list]
for i, future in enumerate(concurrent.futures.as_completed(futures)):
if future.result():
successful += 1
else:
skipped_white_edges += 1
# Progress logging every 100 images
if (i + 1) % 100 == 0:
logger.info(f"Processed {i + 1}/{len(args_list)} images (successful: {successful}, skipped: {skipped_white_edges})")
# Minimal rate limiting for high concurrency
time.sleep(0.01)
logger.info(f"Download complete: {successful}/{len(args_list)} images downloaded, {skipped_white_edges} skipped (white edges)")
# Save summary
summary = {
"total_images": len(args_list),
"successful_downloads": successful,
"skipped_white_edges": skipped_white_edges,
"download_rate": f"{successful/len(args_list)*100:.1f}%",
"stage": "download_complete"
}
with open('./data/stage1_summary.json', 'w') as f:
json.dump(summary, f, indent=2)
def main():
"""Main execution for Stage 1"""
logger.info("Starting Stage 1: Data Loading and Image Downloading...")
# Setup
setup_environment()
# Load data
parquet_path = '/home/fal/partiprompt_clip/curated_part_00000.parquet'
df = load_and_sample_data(parquet_path, n_samples=5000)
# Save the dataframe for other stages
df.to_pickle('./data/sampled_data.pkl')
# Download images with optimized settings
download_images(df, max_workers=30)
logger.info("Stage 1 completed successfully!")
if __name__ == "__main__":
main()