Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,138 Bytes
176edce 06d2a79 176edce 06d2a79 ac3894a 176edce 7fbb32f d32dc63 06d2a79 ac3894a 06d2a79 7fbb32f 343fdaf 95db5c0 8d2510b 176edce 343fdaf 95db5c0 343fdaf 06d2a79 d32dc63 06d2a79 d32dc63 06d2a79 47297cd 3ec2621 ba3c0ae 02fd843 95db5c0 06d2a79 18f2392 3ec2621 95db5c0 3ec2621 95db5c0 18f2392 343fdaf 176edce 95db5c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import spaces
import argparse
import os
import time
from os import path
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
# TRANSFORMERS_CACHE is deprecated, only use HF_HOME
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
import gradio as gr
import torch
# Try to handle version compatibility issues
try:
from diffusers import FluxPipeline
except ImportError as e:
print(f"Error importing FluxPipeline: {e}")
print("Attempting to use StableDiffusionPipeline as fallback...")
from diffusers import StableDiffusionPipeline as FluxPipeline
torch.backends.cuda.matmul.allow_tf32 = True
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
# Custom CSS for gradient effects and visual enhancements
custom_css = """
.container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
.gradio-container {
background: linear-gradient(135deg, #667eea 0%, #764ba2 50%, #f093fb 100%);
min-height: 100vh;
}
.main-content {
background: rgba(255, 255, 255, 0.95);
border-radius: 20px;
padding: 30px;
box-shadow: 0 20px 40px rgba(0, 0, 0, 0.1);
backdrop-filter: blur(10px);
}
h1 {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
text-align: center;
font-size: 3rem !important;
font-weight: 800 !important;
margin-bottom: 1rem !important;
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.1);
}
.subtitle {
text-align: center;
color: #666;
font-size: 1.2rem;
margin-bottom: 2rem;
}
.gr-button-primary {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
border: none !important;
color: white !important;
font-weight: bold !important;
font-size: 1.1rem !important;
padding: 12px 30px !important;
border-radius: 10px !important;
transition: all 0.3s ease !important;
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.3) !important;
}
.gr-button-primary:hover {
transform: translateY(-2px) !important;
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.4) !important;
}
.gr-input, .gr-box {
border-radius: 10px !important;
border: 2px solid #e0e0e0 !important;
transition: all 0.3s ease !important;
}
.gr-input:focus {
border-color: #667eea !important;
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important;
}
.gr-form {
background: white !important;
border-radius: 15px !important;
padding: 20px !important;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.05) !important;
}
.gr-padded {
padding: 15px !important;
}
.badge-container {
display: flex;
justify-content: center;
gap: 12px;
margin: 20px 0;
}
.how-to-use {
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
border-radius: 15px;
padding: 25px;
margin-top: 30px;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.05);
}
.how-to-use h2 {
color: #667eea;
font-size: 1.8rem;
margin-bottom: 1rem;
}
.how-to-use ol {
color: #555;
line-height: 1.8;
}
.how-to-use li {
margin-bottom: 10px;
}
.tip {
background: rgba(102, 126, 234, 0.1);
border-left: 4px solid #667eea;
padding: 15px;
margin-top: 20px;
border-radius: 5px;
color: #555;
font-style: italic;
}
"""
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
with gr.Column(elem_classes="main-content"):
gr.HTML(
"""
<div style="text-align: center; max-width: 800px; margin: 0 auto;">
<h1>FLUX Fast & Furious</h1>
<p class="subtitle">Lightning-fast image generation powered by Hyper-FLUX LoRA</p>
</div>
"""
)
gr.HTML(
"""
<div class='badge-container'>
<a href="https://huggingface.co/spaces/openfree/Best-AI" target="_blank">
<img src="https://img.shields.io/static/v1?label=OpenFree&message=BEST%20AI%20Services&color=%230000ff&labelColor=%23000080&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="OpenFree badge">
</a>
<a href="https://discord.gg/openfreeai" target="_blank">
<img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=white&style=for-the-badge" alt="Discord badge">
</a>
</div>
"""
)
with gr.Row():
with gr.Column(scale=3):
with gr.Group():
prompt = gr.Textbox(
label="β¨ Your Image Description",
placeholder="E.g., A serene landscape with mountains and a lake at sunset",
lines=3
)
with gr.Accordion("π¨ Advanced Settings", open=False):
with gr.Group():
with gr.Row():
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024)
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024)
with gr.Row():
steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8)
scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5)
seed = gr.Number(label="Seed (for reproducibility)", value=3413, precision=0)
generate_btn = gr.Button("π Generate Image", variant="primary", scale=1)
with gr.Column(scale=4):
output = gr.Image(label="π¨ Your Generated Image")
gr.HTML(
"""
<div class="how-to-use">
<h2>π How to Use</h2>
<ol>
<li>βοΈ Enter a detailed description of the image you want to create</li>
<li>βοΈ Adjust advanced settings if desired (tap to expand)</li>
<li>π― Tap "Generate Image" and watch the magic happen!</li>
</ol>
<div class="tip">
π‘ <strong>Pro Tip:</strong> Be specific in your description for best results! Include details about style, mood, colors, and composition.
</div>
</div>
"""
)
@spaces.GPU
def process_image(height, width, steps, scales, prompt, seed):
global pipe
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
return pipe(
prompt=[prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
generate_btn.click(
process_image,
inputs=[height, width, steps, scales, prompt, seed],
outputs=output
)
if __name__ == "__main__":
demo.launch() |