File size: 8,138 Bytes
176edce
06d2a79
176edce
 
 
06d2a79
 
ac3894a
176edce
7fbb32f
d32dc63
06d2a79
ac3894a
06d2a79
 
7fbb32f
 
 
 
 
 
 
 
343fdaf
95db5c0
8d2510b
176edce
 
 
 
 
 
 
 
 
343fdaf
95db5c0
 
343fdaf
06d2a79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d32dc63
06d2a79
 
 
 
 
 
 
 
 
 
 
 
 
d32dc63
 
06d2a79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47297cd
3ec2621
ba3c0ae
02fd843
95db5c0
06d2a79
 
 
 
 
 
 
 
 
18f2392
3ec2621
95db5c0
3ec2621
95db5c0
18f2392
343fdaf
176edce
95db5c0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import spaces
import argparse
import os
import time
from os import path
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download

cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
# TRANSFORMERS_CACHE is deprecated, only use HF_HOME
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path

import gradio as gr
import torch

# Try to handle version compatibility issues
try:
    from diffusers import FluxPipeline
except ImportError as e:
    print(f"Error importing FluxPipeline: {e}")
    print("Attempting to use StableDiffusionPipeline as fallback...")
    from diffusers import StableDiffusionPipeline as FluxPipeline

torch.backends.cuda.matmul.allow_tf32 = True

class timer:
    def __init__(self, method_name="timed process"):
        self.method = method_name
    def __enter__(self):
        self.start = time.time()
        print(f"{self.method} starts")
    def __exit__(self, exc_type, exc_val, exc_tb):
        end = time.time()
        print(f"{self.method} took {str(round(end - self.start, 2))}s")

if not path.exists(cache_path):
    os.makedirs(cache_path, exist_ok=True)

pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)

# Custom CSS for gradient effects and visual enhancements
custom_css = """
.container {
    max-width: 1200px;
    margin: 0 auto;
    padding: 20px;
}

.gradio-container {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 50%, #f093fb 100%);
    min-height: 100vh;
}

.main-content {
    background: rgba(255, 255, 255, 0.95);
    border-radius: 20px;
    padding: 30px;
    box-shadow: 0 20px 40px rgba(0, 0, 0, 0.1);
    backdrop-filter: blur(10px);
}

h1 {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
    background-clip: text;
    text-align: center;
    font-size: 3rem !important;
    font-weight: 800 !important;
    margin-bottom: 1rem !important;
    text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.1);
}

.subtitle {
    text-align: center;
    color: #666;
    font-size: 1.2rem;
    margin-bottom: 2rem;
}

.gr-button-primary {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
    border: none !important;
    color: white !important;
    font-weight: bold !important;
    font-size: 1.1rem !important;
    padding: 12px 30px !important;
    border-radius: 10px !important;
    transition: all 0.3s ease !important;
    box-shadow: 0 4px 15px rgba(102, 126, 234, 0.3) !important;
}

.gr-button-primary:hover {
    transform: translateY(-2px) !important;
    box-shadow: 0 6px 20px rgba(102, 126, 234, 0.4) !important;
}

.gr-input, .gr-box {
    border-radius: 10px !important;
    border: 2px solid #e0e0e0 !important;
    transition: all 0.3s ease !important;
}

.gr-input:focus {
    border-color: #667eea !important;
    box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important;
}

.gr-form {
    background: white !important;
    border-radius: 15px !important;
    padding: 20px !important;
    box-shadow: 0 4px 10px rgba(0, 0, 0, 0.05) !important;
}

.gr-padded {
    padding: 15px !important;
}

.badge-container {
    display: flex;
    justify-content: center;
    gap: 12px;
    margin: 20px 0;
}

.how-to-use {
    background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
    border-radius: 15px;
    padding: 25px;
    margin-top: 30px;
    box-shadow: 0 4px 10px rgba(0, 0, 0, 0.05);
}

.how-to-use h2 {
    color: #667eea;
    font-size: 1.8rem;
    margin-bottom: 1rem;
}

.how-to-use ol {
    color: #555;
    line-height: 1.8;
}

.how-to-use li {
    margin-bottom: 10px;
}

.tip {
    background: rgba(102, 126, 234, 0.1);
    border-left: 4px solid #667eea;
    padding: 15px;
    margin-top: 20px;
    border-radius: 5px;
    color: #555;
    font-style: italic;
}
"""

with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
    with gr.Column(elem_classes="main-content"):
        gr.HTML(
            """
            <div style="text-align: center; max-width: 800px; margin: 0 auto;">
                <h1>FLUX Fast & Furious</h1>
                <p class="subtitle">Lightning-fast image generation powered by Hyper-FLUX LoRA</p>
            </div>
            """
        )
        
        gr.HTML(
            """
            <div class='badge-container'>
                <a href="https://huggingface.co/spaces/openfree/Best-AI" target="_blank">
                    <img src="https://img.shields.io/static/v1?label=OpenFree&message=BEST%20AI%20Services&color=%230000ff&labelColor=%23000080&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="OpenFree badge">
                </a>
        
                <a href="https://discord.gg/openfreeai" target="_blank">
                    <img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=white&style=for-the-badge" alt="Discord badge">
                </a>
            </div>
            """
        )

        with gr.Row():
            with gr.Column(scale=3):
                with gr.Group():
                    prompt = gr.Textbox(
                        label="✨ Your Image Description",
                        placeholder="E.g., A serene landscape with mountains and a lake at sunset",
                        lines=3
                    )
                    
                    with gr.Accordion("🎨 Advanced Settings", open=False):
                        with gr.Group():
                            with gr.Row():
                                height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024)
                                width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024)
                            
                            with gr.Row():
                                steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8)
                                scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5)
                            
                            seed = gr.Number(label="Seed (for reproducibility)", value=3413, precision=0)
                    
                    generate_btn = gr.Button("πŸš€ Generate Image", variant="primary", scale=1)

            with gr.Column(scale=4):
                output = gr.Image(label="🎨 Your Generated Image")
        
        gr.HTML(
            """
            <div class="how-to-use">
                <h2>πŸ“– How to Use</h2>
                <ol>
                    <li>✍️ Enter a detailed description of the image you want to create</li>
                    <li>βš™οΈ Adjust advanced settings if desired (tap to expand)</li>
                    <li>🎯 Tap "Generate Image" and watch the magic happen!</li>
                </ol>
                <div class="tip">
                    πŸ’‘ <strong>Pro Tip:</strong> Be specific in your description for best results! Include details about style, mood, colors, and composition.
                </div>
            </div>
            """
        )

    @spaces.GPU
    def process_image(height, width, steps, scales, prompt, seed):
        global pipe
        with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
            return pipe(
                prompt=[prompt],
                generator=torch.Generator().manual_seed(int(seed)),
                num_inference_steps=int(steps),
                guidance_scale=float(scales),
                height=int(height),
                width=int(width),
                max_sequence_length=256
            ).images[0]

    generate_btn.click(
        process_image,
        inputs=[height, width, steps, scales, prompt, seed],
        outputs=output
    )

if __name__ == "__main__":
    demo.launch()