Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,158 Bytes
2f356cf a203767 2f356cf 0fa76df 2f356cf 9dc104e 2f356cf c37fa9e 895de79 c37fa9e 2f356cf a17b1ad 2f356cf 895de79 2f356cf 895de79 2f356cf 895de79 a203767 895de79 2f356cf a203767 2f356cf 895de79 2f356cf 61fbf22 cd86d7f 2f356cf 895de79 2f356cf 9dc104e fbc6bbb 9dc104e 895de79 2f356cf 895de79 2f356cf 895de79 2f356cf 895de79 2f356cf b85fc73 2f356cf 895de79 2f356cf 895de79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import gradio as gr
import spaces
import sahi.utils
from sahi import AutoDetectionModel
import sahi.predict
import sahi.slicing
from PIL import Image
import numpy
from ultralytics import YOLO
import sys
import types
if 'huggingface_hub.utils._errors' not in sys.modules:
mock_errors = types.ModuleType('_errors')
mock_errors.RepositoryNotFoundError = Exception
sys.modules['huggingface_hub.utils._errors'] = mock_errors
IMAGE_SIZE = 640
# Images
sahi.utils.file.download_from_url(
"https://user-images.githubusercontent.com/34196005/142730935-2ace3999-a47b-49bb-83e0-2bdd509f1c90.jpg",
"apple_tree.jpg",
)
sahi.utils.file.download_from_url(
"https://user-images.githubusercontent.com/34196005/142730936-1b397756-52e5-43be-a949-42ec0134d5d8.jpg",
"highway.jpg",
)
sahi.utils.file.download_from_url(
"https://user-images.githubusercontent.com/34196005/142742871-bf485f84-0355-43a3-be86-96b44e63c3a2.jpg",
"highway2.jpg",
)
sahi.utils.file.download_from_url(
"https://user-images.githubusercontent.com/34196005/142742872-1fefcc4d-d7e6-4c43-bbb7-6b5982f7e4ba.jpg",
"highway3.jpg",
)
# Global model variable
model = None
def load_yolo_model(model_name, confidence_threshold=0.5):
"""
Loads a YOLOv11 detection model.
Args:
model_name (str): The name of the YOLOv11 model to load (e.g., "yolo11n.pt").
confidence_threshold (float): The confidence threshold for object detection.
Returns:
AutoDetectionModel: The loaded SAHI AutoDetectionModel.
"""
global model
model_path = model_name
model = AutoDetectionModel.from_pretrained(
model_type="ultralytics", model_path=model_path, device=None, # auto device selection
confidence_threshold=confidence_threshold, image_size=IMAGE_SIZE
)
return model
@spaces.GPU(duration=60)
def sahi_yolo_inference(
image,
yolo_model_name,
confidence_threshold,
max_detections,
slice_height=512,
slice_width=512,
overlap_height_ratio=0.2,
overlap_width_ratio=0.2,
postprocess_type="NMS",
postprocess_match_metric="IOU",
postprocess_match_threshold=0.5,
postprocess_class_agnostic=False,
):
"""
Performs object detection using SAHI with a specified YOLOv11 model.
Args:
image (PIL.Image.Image): The input image for detection.
yolo_model_name (str): The name of the YOLOv11 model to use for inference.
confidence_threshold (float): The confidence threshold for object detection.
max_detections (int): The maximum number of detections to return.
slice_height (int): The height of each slice for sliced inference.
slice_width (int): The width of each slice for sliced inference.
overlap_height_ratio (float): The overlap ratio for slice height.
overlap_width_ratio (float): The overlap ratio for slice width.
postprocess_type (str): The type of postprocessing to apply ("NMS" or "GREEDYNMM").
postprocess_match_metric (str): The metric for postprocessing matching ("IOU" or "IOS").
postprocess_match_threshold (float): The threshold for postprocessing matching.
postprocess_class_agnostic (bool): Whether postprocessing should be class agnostic.
Returns:
tuple: A tuple containing two PIL.Image.Image objects:
- The image with standard YOLO inference results.
- The image with SAHI sliced YOLO inference results.
"""
load_yolo_model(yolo_model_name, confidence_threshold)
image_width, image_height = image.size
sliced_bboxes = sahi.slicing.get_slice_bboxes(
image_height,
image_width,
slice_height,
slice_width,
False,
overlap_height_ratio,
overlap_width_ratio,
)
if len(sliced_bboxes) > 60:
raise ValueError(
f"{len(sliced_bboxes)} slices are too much for huggingface spaces, try smaller slice size."
)
# Standard inference
prediction_result_1 = sahi.predict.get_prediction(
image=image, detection_model=model,
)
# Filter by max_detections for standard inference
if max_detections is not None and len(prediction_result_1.object_prediction_list) > max_detections:
prediction_result_1.object_prediction_list = sorted(
prediction_result_1.object_prediction_list, key=lambda x: x.score.value, reverse=True
)[:max_detections]
visual_result_1 = sahi.utils.cv.visualize_object_predictions(
image=numpy.array(image),
object_prediction_list=prediction_result_1.object_prediction_list,
)
output_1 = Image.fromarray(visual_result_1["image"])
# Sliced inference
prediction_result_2 = sahi.predict.get_sliced_prediction(
image=image,
detection_model=model,
slice_height=int(slice_height),
slice_width=int(slice_width),
overlap_height_ratio=overlap_height_ratio,
overlap_width_ratio=overlap_width_ratio,
postprocess_type=postprocess_type,
postprocess_match_metric=postprocess_match_metric,
postprocess_match_threshold=postprocess_match_threshold,
postprocess_class_agnostic=postprocess_class_agnostic,
)
# Filter by max_detections for sliced inference
if max_detections is not None and len(prediction_result_2.object_prediction_list) > max_detections:
prediction_result_2.object_prediction_list = sorted(
prediction_result_2.object_prediction_list, key=lambda x: x.score.value, reverse=True
)[:max_detections]
visual_result_2 = sahi.utils.cv.visualize_object_predictions(
image=numpy.array(image),
object_prediction_list=prediction_result_2.object_prediction_list,
)
output_2 = Image.fromarray(visual_result_2["image"])
return output_1, output_2
with gr.Blocks() as app:
gr.Markdown("# Small Object Detection with SAHI + YOLOv11")
gr.Markdown(
"SAHI + YOLOv11 demo for small object detection. "
"Upload your own image or click an example image to use."
)
with gr.Row():
with gr.Column():
original_image_input = gr.Image(type="pil", label="Original Image")
yolo_model_dropdown = gr.Dropdown(
choices=["yolo11n.pt", "yolo11s.pt", "yolo11m.pt", "yolo11l.pt", "yolo11x.pt"],
value="yolo11s.pt",
label="YOLOv11 Model",
)
confidence_threshold_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.5,
label="Confidence Threshold",
)
max_detections_slider = gr.Slider(
minimum=1,
maximum=500,
step=1,
value=300,
label="Max Detections",
)
slice_height_input = gr.Number(value=512, label="Slice Height")
slice_width_input = gr.Number(value=512, label="Slice Width")
overlap_height_ratio_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.2,
label="Overlap Height Ratio",
)
overlap_width_ratio_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.2,
label="Overlap Width Ratio",
)
postprocess_type_dropdown = gr.Dropdown(
["NMS", "GREEDYNMM"],
type="value",
value="NMS",
label="Postprocess Type",
)
postprocess_match_metric_dropdown = gr.Dropdown(
["IOU", "IOS"], type="value", value="IOU", label="Postprocess Match Metric"
)
postprocess_match_threshold_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.5,
label="Postprocess Match Threshold",
)
postprocess_class_agnostic_checkbox = gr.Checkbox(value=True, label="Postprocess Class Agnostic")
submit_button = gr.Button("Run Inference")
with gr.Column():
output_standard = gr.Image(type="pil", label="YOLOv11 Standard")
output_sahi_sliced = gr.Image(type="pil", label="YOLOv11 + SAHI Sliced")
gr.Examples(
examples=[
["apple_tree.jpg", "yolo11s.pt", 0.5, 300, 256, 256, 0.2, 0.2, "NMS", "IOU", 0.4, True],
["highway.jpg", "yolo11s.pt", 0.5, 300, 256, 256, 0.2, 0.2, "NMS", "IOU", 0.4, True],
["highway2.jpg", "yolo11s.pt", 0.5, 300, 512, 512, 0.2, 0.2, "NMS", "IOU", 0.4, True],
["highway3.jpg", "yolo11s.pt", 0.5, 300, 512, 512, 0.2, 0.2, "NMS", "IOU", 0.4, True],
],
inputs=[
original_image_input,
yolo_model_dropdown,
confidence_threshold_slider,
max_detections_slider,
slice_height_input,
slice_width_input,
overlap_height_ratio_slider,
overlap_width_ratio_slider,
postprocess_type_dropdown,
postprocess_match_metric_dropdown,
postprocess_match_threshold_slider,
postprocess_class_agnostic_checkbox,
],
outputs=[output_standard, output_sahi_sliced],
fn=sahi_yolo_inference,
cache_examples=True,
)
submit_button.click(
fn=sahi_yolo_inference,
inputs=[
original_image_input,
yolo_model_dropdown,
confidence_threshold_slider,
max_detections_slider,
slice_height_input,
slice_width_input,
overlap_height_ratio_slider,
overlap_width_ratio_slider,
postprocess_type_dropdown,
postprocess_match_metric_dropdown,
postprocess_match_threshold_slider,
postprocess_class_agnostic_checkbox,
],
outputs=[output_standard, output_sahi_sliced],
)
app.launch(mcp_server=True) |