Spaces:
Running
Running
File size: 16,587 Bytes
2d3b132 eec78a0 2d3b132 eec78a0 2d3b132 eec78a0 2d3b132 eec78a0 2d3b132 eec78a0 2d3b132 eec78a0 2d3b132 eec78a0 2d3b132 eec78a0 2d3b132 eec78a0 2d3b132 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
import gradio as gr
import os
import json
import time
import requests
import trafilatura
import xml.etree.ElementTree as ET
from typing import Any, Dict, List, Optional
from openai import OpenAI
from dotenv import load_dotenv
from langfuse import observe, get_client
load_dotenv()
# ---------- Config ----------
HF_TOKEN = os.getenv("HF_TOKEN")
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
assert HF_TOKEN, "Missing HF_TOKEN"
assert SERPER_API_KEY, "Missing SERPER_API_KEY"
# Available models for selection
AVAILABLE_MODELS = [
"openai/gpt-oss-120b:fireworks-ai",
"openai/gpt-oss-20b:fireworks-ai"
]
# Default model
DEFAULT_MODEL = "openai/gpt-oss-120b:fireworks-ai"
BASE_URL = "https://router.huggingface.co/v1"
client = OpenAI(base_url=BASE_URL, api_key=HF_TOKEN)
# ---------- Tools ----------
def fetch_google_news_rss(num: int = 10) -> List[Dict[str, Any]]:
"""Fetch general news from Google News RSS feed."""
try:
url = "https://news.google.com/rss"
r = requests.get(url, timeout=30)
r.raise_for_status()
# Parse RSS XML
root = ET.fromstring(r.content)
items = root.findall('.//item')
results = []
for item in items[:num]:
title = item.find('title')
link = item.find('link')
pub_date = item.find('pubDate')
source = item.find('source')
results.append({
"title": title.text if title is not None else "No title",
"link": link.text if link is not None else "",
"pub_date": pub_date.text if pub_date is not None else "No date",
"source": source.text if source is not None else "Google News"
})
return results
except Exception as e:
return {"ok": False, "error": repr(e)}
def serper_news_search(query: str, num: int = 5) -> List[Dict[str, Any]]:
"""Fetch news for a specific topic or query."""
url = "https://google.serper.dev/news"
headers = {"X-API-KEY": SERPER_API_KEY, "Content-Type": "application/json"}
payload = {"q": query, "gl": "us", "hl": "en", "tbs": "qdr:d"}
r = requests.post(url, headers=headers, json=payload, timeout=30)
r.raise_for_status()
data = r.json()
results = []
for item in data.get("news", [])[:num]:
results.append({
"title": item.get("title"),
"link": item.get("link"),
"snippet": item.get("snippet"),
"date": item.get("date"), # ISO8601 when available
"source": item.get("source")
})
return results
def serper_site_search(query: str, site: str, num: int = 5) -> List[Dict[str, Any]]:
"""Site restricted web search."""
url = "https://google.serper.dev/search"
headers = {"X-API-KEY": SERPER_API_KEY, "Content-Type": "application/json"}
payload = {"q": f"site:{site} {query}", "gl": "us", "hl": "en"}
r = requests.post(url, headers=headers, json=payload, timeout=30)
r.raise_for_status()
data = r.json()
results = []
for item in data.get("organic", [])[:num]:
results.append({
"title": item.get("title"),
"link": item.get("link"),
"snippet": item.get("snippet"),
"favicons": item.get("favicons", {})
})
return results
def fetch_article(url: str, max_chars: int = 12000) -> Dict[str, Any]:
"""Fetch and extract clean article text with trafilatura."""
try:
downloaded = trafilatura.fetch_url(url, timeout=30)
text = trafilatura.extract(downloaded, include_comments=False) if downloaded else None
if not text:
return {"ok": False, "error": "could_not_extract"}
text = text.strip()
if len(text) > max_chars:
text = text[:max_chars] + " ..."
return {"ok": True, "text": text}
except Exception as e:
return {"ok": False, "error": repr(e)}
# OpenAI-style tool specs for function calling
TOOLS = [
{
"type": "function",
"function": {
"name": "fetch_google_news_rss",
"description": "Fetch general top headlines from Google News RSS feed. Use this when you want to see what's happening in the world today without a specific topic focus.",
"parameters": {
"type": "object",
"properties": {
"num": {"type": "integer", "minimum": 1, "maximum": 20, "description": "Number of news items to fetch"}
},
"required": []
}
}
},
{
"type": "function",
"function": {
"name": "serper_news_search",
"description": "Search Google News for articles about a specific topic or query. Use this when you need news about particular subjects, companies, or events.",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string"},
"num": {"type": "integer", "minimum": 1, "maximum": 20}
},
"required": ["query"]
}
}
},
{
"type": "function",
"function": {
"name": "serper_site_search",
"description": "Search a specific news domain for relevant articles.",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string"},
"site": {"type": "string", "description": "Domain like ft.com or nytimes.com"},
"num": {"type": "integer", "minimum": 1, "maximum": 10}
},
"required": ["query", "site"]
}
}
},
{
"type": "function",
"function": {
"name": "fetch_article",
"description": "Download and extract the main text of an article from a URL. ONLY use this when the user asks specific questions about article content, details, or wants to analyze/quote from particular articles. Do NOT use this for general news summaries or overviews.",
"parameters": {
"type": "object",
"properties": {
"url": {"type": "string"},
"max_chars": {"type": "integer", "minimum": 1000, "maximum": 60000}
},
"required": ["url"]
}
}
}
]
FUNCTION_MAP = {
"fetch_google_news_rss": fetch_google_news_rss,
"serper_news_search": serper_news_search,
"serper_site_search": serper_site_search,
"fetch_article": fetch_article,
}
# ---------- Agent loop ----------
def call_model(messages: List[Dict[str, str]], tools=TOOLS, temperature: float = 0.3, model: str = DEFAULT_MODEL):
"""One step with tool calling support."""
try:
return client.chat.completions.create(
model=model,
temperature=temperature,
messages=messages,
tools=tools,
tool_choice="auto"
)
except Exception as e:
print(f"Error calling model: {e}")
raise
def run_agent(user_prompt: str, site_limit: Optional[str] = None, model: str = DEFAULT_MODEL) -> str:
"""
High level prompt for a news agent.
It may search, read links, then synthesize and cite URLs.
"""
system = {
"role": "system",
"content": (
"You are a careful news agent. Follow these steps:\n"
"1. For general news requests: Use fetch_google_news_rss to get top headlines\n"
"2. For specific topic requests: Use serper_news_search with the topic\n"
"3. ONLY use fetch_article when the user asks specific questions about article content, details, or wants to analyze/quote from particular articles\n"
"4. For general news summaries, provide information based on headlines and snippets without fetching full articles\n"
"5. STOP calling tools and provide your final answer\n"
"6. Always include a bullet list of sources with URLs\n"
"IMPORTANT: After reading articles (if any), you must provide your final answer without calling more tools.\n\n"
"TOOL SELECTION GUIDE:\n"
"- fetch_google_news_rss: Use for 'what's happening today' or 'top news' requests\n"
"- serper_news_search: Use for specific topics like 'AI chips', 'Nvidia', 'climate change'\n"
"- serper_site_search: Use when restricted to specific news sources\n"
"- fetch_article: ONLY use when user asks about specific article content, details, or wants to analyze particular articles\n"
"PRIORITY: For general news requests, provide summaries based on headlines and snippets. Only fetch full articles when specifically needed for detailed analysis.\n"
),
}
messages: List[Dict[str, str]] = [system, {"role": "user", "content": user_prompt}]
if site_limit:
messages.append({"role": "user", "content": f"Restrict searches to {site_limit} when appropriate."})
for step in range(6): # small safety cap
try:
resp = call_model(messages, model=model)
msg = resp.choices[0].message
# If the model wants to call tools
if getattr(msg, "tool_calls", None) and msg.tool_calls:
# Add the assistant message with tool calls to the conversation
assistant_message = {
"role": "assistant",
"content": msg.content or "",
"tool_calls": [
{
"id": tool_call.id,
"type": "function",
"function": {
"name": tool_call.function.name,
"arguments": tool_call.function.arguments
}
}
for tool_call in msg.tool_calls
]
}
messages.append(assistant_message)
# Process each tool call
for tool_call in msg.tool_calls:
name = tool_call.function.name
args = {}
try:
args = json.loads(tool_call.function.arguments or "{}")
except json.JSONDecodeError:
args = {}
fn = FUNCTION_MAP.get(name)
if not fn:
messages.append({
"role": "tool",
"tool_call_id": tool_call.id,
"name": name,
"content": json.dumps({"ok": False, "error": "unknown_tool"})
})
continue
try:
result = fn(**args)
except TypeError as e:
result = {"ok": False, "error": f"bad_args: {e}"}
except Exception as e:
result = {"ok": False, "error": repr(e)}
tool_response = {
"role": "tool",
"tool_call_id": tool_call.id,
"name": name,
"content": json.dumps(result),
}
messages.append(tool_response)
# After processing tools, add a reminder to synthesize
if step >= 2: # After 2+ tool calls, encourage synthesis
messages.append({
"role": "user",
"content": "You now have sufficient information. Please provide your final answer with sources."
})
# Continue loop so the model can see tool outputs
continue
# If we have a final assistant message without tool calls
if msg.content:
return msg.content
# Fallback tiny sleep then continue
time.sleep(0.2)
except Exception as e:
# If there's an error, try to continue or return error message
if step == 5: # Last step
return f"Error occurred during processing: {e}"
time.sleep(0.5)
continue
return "I could not complete the task within the step limit. Try refining your query."
# ---------- Gradio Interface ----------
@observe()
def chat_with_agent(message, history, model):
"""Handle chat messages and return agent responses."""
if not message.strip():
return history
lf = get_client()
lf.update_current_trace(
input={"user_message": message, "model": model, "history_length": len(history)}
)
try:
response = run_agent(message, None, model)
lf.update_current_trace(
output={"agent_response": response},
metadata={
"model": model,
"message_length": len(message),
"response_length": len(response),
"success": True,
},
)
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": response})
return history
except Exception as e:
lf.update_current_trace(
output={"error": str(e)},
metadata={"success": False, "error": str(e)},
)
error_msg = f"Sorry, I encountered an error: {str(e)}"
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": error_msg})
return history
def clear_chat():
"""Clear the chat history."""
return [], ""
# Create the Gradio interface
with gr.Blocks(
title="Chat with the News",
theme=gr.themes.Monochrome()
) as demo:
# Header using Gradio markdown
gr.Markdown("""
# π° Chat with the News
Your AI-powered news research assistant with real-time search capabilities, based on [GPT-OSS models](https://huggingface.co/collections/openai/gpt-oss-68911959590a1634ba11c7a4) and running on inference providers.
""")
# Examples section using Gradio markdown
gr.Markdown("""
### π‘ Try these examples:
- **General:** "What are the top news stories today?"
- **Specific topic:** "What's the latest on artificial intelligence?"
- **Site-specific:** "What's the latest climate change news on the BBC?"
""")
# Model selector
model_selector = gr.Dropdown(
choices=AVAILABLE_MODELS,
value=DEFAULT_MODEL,
label="π€ Select Model",
info="Choose between GPT-OSS 120B and 20B models"
)
# Message input
msg = gr.Textbox(
label="Ask me about the news",
placeholder="What would you like to know about today?",
lines=2
)
# Buttons in a row
with gr.Row():
submit_btn = gr.Button("π Send", variant="primary", size="lg")
clear_btn = gr.Button("ποΈ Clear Chat", variant="secondary", size="lg")
# Chat interface
chatbot = gr.Chatbot(
label="News Agent",
height=500,
show_label=False,
container=True,
type="messages"
)
# Event handlers
submit_btn.click(
chat_with_agent,
inputs=[msg, chatbot, model_selector],
outputs=[chatbot],
show_progress=True
)
msg.submit(
chat_with_agent,
inputs=[msg, chatbot, model_selector],
outputs=[chatbot],
show_progress=True
)
clear_btn.click(
clear_chat,
outputs=[chatbot, msg]
)
# Instructions using Gradio markdown
gr.Markdown("""
---
### βΉοΈ How it works
This AI agent can search Google News, fetch articles from specific sources, and provide comprehensive news summaries with proper citations. It uses real-time data and can restrict searches to specific news domains when requested.
**Model Selection:**
- **GPT-OSS 120B**: Larger, more capable model for complex reasoning tasks
- **GPT-OSS 20B**: Faster, more efficient model for quick responses
""")
# Launch the app
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
)
|