Spaces:
Sleeping
Sleeping
File size: 15,309 Bytes
ac301bc ab1ba02 ac301bc 2dc923b ac301bc 2dc923b ac301bc 2dc923b ac301bc 2dc923b ac301bc 2dc923b ac301bc 2dc923b ac301bc 2dc923b ac301bc a330e89 ac301bc ab1ba02 ac301bc ab1ba02 d8debf8 ab1ba02 f487d08 7154062 b2d35b9 ab1ba02 7154062 fdc3c42 7154062 fdc3c42 ab1ba02 7154062 b2d35b9 7154062 fdc3c42 ab1ba02 7154062 f487d08 c266c49 fdc3c42 b2d35b9 d8debf8 ac301bc ab1ba02 ac301bc ab1ba02 ac301bc 2dc923b ac301bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
# app.py
import os
import logging
import asyncio
import nest_asyncio
from datetime import datetime
import uuid
import aiohttp
import gradio as gr
import requests
import xml.etree.ElementTree as ET
import json
from langfuse.llama_index import LlamaIndexInstrumentor
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
from llama_index.tools.weather import OpenWeatherMapToolSpec
from llama_index.tools.playwright import PlaywrightToolSpec
from llama_index.core.tools import FunctionTool
from llama_index.core.agent.workflow import AgentWorkflow
from llama_index.core.workflow import Context
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
from llama_index.core.memory import ChatMemoryBuffer
from llama_index.readers.web import RssReader, SimpleWebPageReader
from llama_index.core import SummaryIndex
# Import the event types for streaming
from llama_index.core.agent.workflow import AgentStream, ToolCall, ToolCallResult
import subprocess
subprocess.run(["playwright", "install"])
# allow nested loops in Spaces
nest_asyncio.apply()
# --- Llangfuse ---
instrumentor = LlamaIndexInstrumentor(
public_key=os.environ.get("LANGFUSE_PUBLIC_KEY"),
secret_key=os.environ.get("LANGFUSE_SECRET_KEY"),
host=os.environ.get("LANGFUSE_HOST"),
)
instrumentor.start()
# --- Secrets via env vars ---
HF_TOKEN = os.getenv("HF_TOKEN")
# OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
OPENWEATHERMAP_KEY = os.getenv("OPENWEATHERMAP_API_KEY")
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
# --- LLMs ---
llm = HuggingFaceInferenceAPI(
model_name="Qwen/Qwen2.5-Coder-32B-Instruct",
token=HF_TOKEN,
task="conversational",
streaming=True
)
memory = ChatMemoryBuffer.from_defaults(token_limit=8192)
today_str = datetime.now().strftime("%B %d, %Y")
ANON_USER_ID = os.environ.get("ANON_USER_ID", uuid.uuid4().hex)
# # OpenAI for pure function-calling
# openai_llm = OpenAI(
# model="gpt-4o",
# api_key=OPENAI_API_KEY,
# temperature=0.0,
# streaming=False,
# )
# --- Tools Setup ---
# DuckDuckGo
# duck_spec = DuckDuckGoSearchToolSpec()
# search_tool = FunctionTool.from_defaults(duck_spec.duckduckgo_full_search)
# Weather
openweather_api_key=OPENWEATHERMAP_KEY
weather_tool_spec = OpenWeatherMapToolSpec(key=openweather_api_key)
weather_tool = FunctionTool.from_defaults(
weather_tool_spec.weather_at_location,
name="current_weather",
description="Get the current weather at a specific location (city, country)."
)
forecast_tool = FunctionTool.from_defaults(
weather_tool_spec.forecast_tommorrow_at_location,
name="weather_forecast",
description="Get tomorrow's weather forecast for a specific location (city, country)."
)
# Playwright (synchronous start)
# async def _start_browser():
# return await PlaywrightToolSpec.create_async_playwright_browser(headless=True)
# browser = asyncio.get_event_loop().run_until_complete(_start_browser())
# playwright_tool_spec = PlaywrightToolSpec.from_async_browser(browser)
# navigate_tool = FunctionTool.from_defaults(
# playwright_tool_spec.navigate_to,
# name="web_navigate",
# description="Navigate to a specific URL."
# )
# extract_text_tool = FunctionTool.from_defaults(
# playwright_tool_spec.extract_text,
# name="web_extract_text",
# description="Extract all text from the current page."
# )
# extract_links_tool = FunctionTool.from_defaults(
# playwright_tool_spec.extract_hyperlinks,
# name="web_extract_links",
# description="Extract all hyperlinks from the current page."
# )
# Google News RSS
# def fetch_google_news_rss():
# docs = RssReader(html_to_text=True).load_data(["https://news.google.com/rss"])
# return [{"title":d.metadata.get("title",""), "url":d.metadata.get("link","")} for d in docs]
# -----------------------------
# Google News RSS
# -----------------------------
def fetch_news_headlines() -> str:
"""Fetches the latest news from Google News RSS feed.
Returns:
A string containing the latest news articles from Google News, or an error message if the request fails.
"""
url = "https://news.google.com/rss"
try:
response = requests.get(url)
response.raise_for_status()
# Parse the XML content
root = ET.fromstring(response.content)
# Format the news articles into a readable string
formatted_news = []
for i, item in enumerate(root.findall('.//item')):
if i >= 5:
break
title = item.find('title').text if item.find('title') is not None else 'N/A'
link = item.find('link').text if item.find('link') is not None else 'N/A'
pub_date = item.find('pubDate').text if item.find('pubDate') is not None else 'N/A'
description = item.find('description').text if item.find('description') is not None else 'N/A'
formatted_news.append(f"Title: {title}")
formatted_news.append(f"Published: {pub_date}")
formatted_news.append(f"Link: {link}")
formatted_news.append(f"Description: {description}")
formatted_news.append("---")
return "\n".join(formatted_news) if formatted_news else "No news articles found."
except requests.exceptions.RequestException as e:
return f"Error fetching news: {str(e)}"
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
google_rss_tool = FunctionTool.from_defaults(
fn=fetch_news_headlines,
name="fetch_google_news_rss",
description="Fetch latest headlines."
)
# -----------------------------
# SERPER API
# -----------------------------
def fetch_news_topics(query: str) -> str:
"""Fetches news articles about a specific topic using the Serper API.
Args:
query: The topic to search for news about.
Returns:
A string containing the news articles found, or an error message if the request fails.
"""
url = "https://google.serper.dev/news"
payload = json.dumps({
"q": query
})
headers = {
'X-API-KEY': os.getenv('SERPER_API_KEY'),
'Content-Type': 'application/json'
}
try:
response = requests.post(url, headers=headers, data=payload)
response.raise_for_status()
news_data = response.json()
# Format the news articles into a readable string
formatted_news = []
for i, article in enumerate(news_data.get('news', [])):
if i >= 5:
break
formatted_news.append(f"Title: {article.get('title', 'N/A')}")
formatted_news.append(f"Source: {article.get('source', 'N/A')}")
formatted_news.append(f"Link: {article.get('link', 'N/A')}")
formatted_news.append(f"Snippet: {article.get('snippet', 'N/A')}")
formatted_news.append("---")
return "\n".join(formatted_news) if formatted_news else "No news articles found."
except requests.exceptions.RequestException as e:
return f"Error fetching news: {str(e)}"
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
serper_news_tool = FunctionTool.from_defaults(
fetch_news_topics,
name="fetch_news_from_serper",
description="Fetch news articles on a specific topic."
)
# -----------------------------
# WEB PAGE READER
# -----------------------------
def summarize_webpage(url: str) -> str:
"""Fetches and summarizes the content of a web page."""
try:
# NOTE: the html_to_text=True option requires html2text to be installed
documents = SimpleWebPageReader(html_to_text=True).load_data([url])
if not documents:
return "No content could be loaded from the provided URL."
index = SummaryIndex.from_documents(documents)
query_engine = index.as_query_engine()
response = query_engine.query("Summarize the main points of this page.")
return str(response)
except Exception as e:
return f"An error occurred while summarizing the web page: {str(e)}"
webpage_reader_tool = FunctionTool.from_defaults(
summarize_webpage,
name="summarize_webpage",
description="Read and summarize the main points of a web page given its URL."
)
# Create the agent workflow
tools = [
#search_tool,
#navigate_tool,
#extract_text_tool,
#extract_links_tool,
weather_tool,
forecast_tool,
google_rss_tool,
serper_news_tool,
webpage_reader_tool,
]
web_agent = AgentWorkflow.from_tools_or_functions(
tools,
llm=llm,
system_prompt="""You are a helpful assistant with access to specialized tools for retrieving information about weather, and news.
AVAILABLE TOOLS:
1. current_weather - Get current weather conditions for a location
2. weather_forecast - Get tomorrow's weather forecast for a location
3. fetch_google_news_rss - Fetch the latest general news headlines
4. fetch_news_from_serper - Fetch news articles on a specific topic
5. summarize_webpage - Read and summarize the content of a web page
WHEN AND HOW TO USE EACH TOOL:
For weather information:
- Use current_weather when asked about present conditions
EXAMPLE: User asks "What's the weather in Tokyo?"
TOOL: current_weather
PARAMETERS: {"location": "Tokyo, JP"}
- Use weather_forecast when asked about future weather
EXAMPLE: User asks "What will the weather be like in Paris tomorrow?"
TOOL: weather_forecast
PARAMETERS: {"location": "Paris, FR"}
For news retrieval:
- Use fetch_google_news_rss for general headlines (requires NO parameters)
EXAMPLE: User asks "What's happening in the news today?"
TOOL: fetch_google_news_rss
PARAMETERS: {}
- Use fetch_news_from_serper for specific news topics
EXAMPLE: User asks "Any news about AI advancements?"
TOOL: fetch_news_from_serper
PARAMETERS: {"query": "artificial intelligence advancements"}
For web content:
- Use summarize_webpage to extract information from websites
EXAMPLE: User asks "Can you summarize the content on hf.co/learn?"
TOOL: summarize_webpage
PARAMETERS: {"url": "https://hf.co/learn"}
IMPORTANT GUIDELINES:
- Always verify the format of parameters before submitting
- For locations, use the format "City, Country Code" (e.g., "Montreal, CA")
- For URLs, include the full address with http:// or https://
- When multiple tools are needed to answer a complex question, use them in sequence
- If possible, provide clickable links for your sources in your final answer.
When you use a tool, explain to the user that you're retrieving information. After receiving the tool's output, provide a helpful summary of the information.
"""
)
ctx = Context(web_agent)
# Async helper to run agent queries (kept for compatibility)
def run_query_sync(query: str):
"""Helper to run async agent.run in sync context."""
return asyncio.get_event_loop().run_until_complete(
web_agent.run(query, ctx=ctx)
)
# Updated run_query function to use stream_events
async def run_query(query: str):
trace_id = f"agent-run-{uuid.uuid4().hex}"
try:
with instrumentor.observe(
trace_id=trace_id,
session_id="web-agent-session",
user_id=ANON_USER_ID,
):
# Start the handler
handler = web_agent.run(query, ctx=ctx)
# Keep track of what we're showing to avoid duplicates
tool_calls_shown = set()
# Stream content
async for event in handler.stream_events():
if isinstance(event, AgentStream):
# Filter out any lines starting with "Thought:" or "Action:"
if hasattr(event, 'delta') and event.delta:
delta = event.delta
# Filter out thought processes and internal reasoning
if not (delta.strip().startswith("Thought:") or
delta.strip().startswith("Action:") or
delta.strip().startswith("Answer:")):
yield delta
elif isinstance(event, ToolCall):
tool_name = getattr(event, 'name', getattr(event, 'function_name', getattr(event, 'tool_name', "unknown tool")))
# Only show tool call message once per tool+call combo
tool_call_id = f"{tool_name}_{hash(str(getattr(event, 'args', '')))}"
if tool_call_id not in tool_calls_shown:
tool_calls_shown.add(tool_call_id)
yield f"\n\n🔧 Using tool: {tool_name}...\n"
elif isinstance(event, ToolCallResult):
# We don't need to show the raw tool result to the user
# The agent will incorporate the results in its response
pass
except Exception as e:
yield f"\n\n❌ Error: {str(e)}\n"
import traceback
yield f"Traceback: {traceback.format_exc()}"
finally:
instrumentor.flush()
# Updated gradio_query function
async def gradio_query(user_input, chat_history=None):
history = chat_history or []
history.append({"role": "user", "content": user_input})
# Add initial assistant message
history.append({"role": "assistant", "content": "Processing..."})
yield history, history
# Get streaming response
full_response = ""
async for chunk in run_query(user_input):
if chunk:
full_response += chunk
history[-1]["content"] = full_response
yield history, history
# Build and launch Gradio app
grb = gr.Blocks()
with grb:
gr.Markdown("## Perspicacity")
gr.Markdown(
"""
This bot can check the news, tell you the weather, and even browse websites to answer follow-up questions — all powered by a team of tiny AI tools working behind the scenes.\n\n
🧪 Built for fun during the [AI Agents course](https://huggingface.co/learn/agents-course/unit0/introduction) — it's just a demo to show what agents can do.\n
🙌 Got ideas or improvements? PRs welcome!\n\n
👉 Try asking 'What's the weather in Montreal?' or 'What's in the news today?'
"""
)
chatbot = gr.Chatbot(type="messages")
txt = gr.Textbox(placeholder="Ask me anything...", show_label=False)
# Set up event handlers for streaming
txt.submit(
gradio_query,
inputs=[txt, chatbot],
outputs=[chatbot, chatbot]
).then(
lambda: gr.update(value=""), # Clear the textbox after submission
None,
[txt]
)
# Also update the button click handler
send_btn = gr.Button("Send")
send_btn.click(
gradio_query,
[txt, chatbot],
[chatbot, chatbot]
).then(
lambda: gr.update(value=""), # Clear the textbox after submission
None,
[txt]
)
if __name__ == "__main__":
grb.launch() |