import gradio as gr from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import os from datetime import datetime from functools import lru_cache import torch import requests # Language codes LANGUAGE_CODES = { "English": "eng_Latn", "Korean": "kor_Hang", "Japanese": "jpn_Jpan", "Chinese": "zho_Hans", "Spanish": "spa_Latn", "French": "fra_Latn", "German": "deu_Latn", "Russian": "rus_Cyrl", "Portuguese": "por_Latn", "Italian": "ita_Latn", "Burmese": "mya_Mymr", "Thai": "tha_Thai" } # Translation history class TranslationHistory: def __init__(self): self.history = [] def add(self, src, translated, src_lang, tgt_lang): self.history.insert(0, { "source": src, "translated": translated, "src_lang": src_lang, "tgt_lang": tgt_lang, "timestamp": datetime.now().isoformat() }) if len(self.history) > 100: self.history.pop() def get(self): return self.history def clear(self): self.history = [] history = TranslationHistory() # Translation model model_name = "facebook/nllb-200-distilled-600M" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) @lru_cache(maxsize=512) def cached_translate(text, src_lang, tgt_lang, max_length=128, temperature=0.7): if not text.strip(): return "" src_code = LANGUAGE_CODES.get(src_lang, src_lang) tgt_code = LANGUAGE_CODES.get(tgt_lang, tgt_lang) input_tokens = tokenizer(text, return_tensors="pt", padding=True) input_tokens = {k: v.to(device) for k, v in input_tokens.items()} forced_bos_token_id = tokenizer.convert_tokens_to_ids(tgt_code) output = model.generate( **input_tokens, forced_bos_token_id=forced_bos_token_id, max_length=max_length, temperature=temperature, num_beams=5, early_stopping=True ) result = tokenizer.decode(output[0], skip_special_tokens=True) history.add(text, result, src_lang, tgt_lang) return result def translate_file(file, src_lang, tgt_lang, max_length, temperature): try: lines = file.decode("utf-8").splitlines() translated = [cached_translate(line, src_lang, tgt_lang, max_length, temperature) for line in lines if line.strip()] return "\n".join(translated) except Exception as e: return f"File translation error: {e}" # Summarizer API API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn" HF_API_KEY = os.environ.get("HF_API_KEY") headers = {"Authorization": f"Bearer {HF_API_KEY}"} def summarize_text(text, max_length): if not text.strip(): return "" min_length = max(10, max_length // 4) response = requests.post(API_URL, headers=headers, json={ "inputs": text, "parameters": {"min_length": min_length, "max_length": max_length} }) result = response.json() return result[0]["summary_text"] if isinstance(result, list) else "Error: " + str(result) # Paraphraser paraphrase_tokenizer = AutoTokenizer.from_pretrained("tuner007/pegasus_paraphrase") paraphrase_model = AutoModelForSeq2SeqLM.from_pretrained("tuner007/pegasus_paraphrase") paraphrase_model.to(device) def paraphrase_text(input_text, num_return_sequences, num_beams): batch = paraphrase_tokenizer([input_text], truncation=True, padding="longest", max_length=60, return_tensors="pt").to(device) translated = paraphrase_model.generate(**batch, max_length=60, num_beams=num_beams, num_return_sequences=num_return_sequences, temperature=1.5) return paraphrase_tokenizer.batch_decode(translated, skip_special_tokens=True) # Grammar Corrector grammar_model_name = "pszemraj/flan-t5-large-grammar-synthesis" grammar_tokenizer = AutoTokenizer.from_pretrained(grammar_model_name) grammar_model = AutoModelForSeq2SeqLM.from_pretrained(grammar_model_name) grammar_model.to(device) def correct_grammar(text): input_ids = grammar_tokenizer(f"grammar: {text}", return_tensors="pt", truncation=True).input_ids.to(device) output_ids = grammar_model.generate(input_ids, max_length=256, num_beams=5) return grammar_tokenizer.decode(output_ids[0], skip_special_tokens=True) # UI Style gradio_style = """ .gr-button { border-radius: 12px !important; padding: 10px 20px !important; font-weight: bold; } textarea, input[type=text] { border: 2px solid #00ADB5 !important; border-radius: 10px; transition: 0.2s; } textarea:focus, input[type=text]:focus { border-color: #FF5722 !important; box-shadow: 0 0 8px #FF5722 !important; } """ # Gradio UI with gr.Blocks(css=gradio_style, theme=gr.themes.Soft()) as demo: gr.Markdown("## 🤖 AI Toolbox: Translate, Summarize, Paraphrase, Correct Grammar") with gr.Tab("🌐 Translator"): src_lang = gr.Dropdown(list(LANGUAGE_CODES.keys()), label="From", value="English") swap = gr.Button("⇄") tgt_lang = gr.Dropdown(list(LANGUAGE_CODES.keys()), label="To", value="Korean") input_text = gr.Textbox(lines=3, label="Input Text") output_text = gr.Textbox(lines=3, label="Translated Output", interactive=False) translate_btn = gr.Button("🚀 Translate") clear_btn = gr.Button("đŸ§Ŋ Clear") max_length = gr.Slider(10, 512, value=128, label="Max Length") temperature = gr.Slider(0.1, 2.0, value=0.7, label="Temperature") translate_btn.click(cached_translate, [input_text, src_lang, tgt_lang, max_length, temperature], output_text) clear_btn.click(lambda: ("", ""), None, [input_text, output_text]) with gr.Tab("📁 File Translator"): file_input = gr.File(label="Upload .txt File") file_src = gr.Dropdown(list(LANGUAGE_CODES.keys()), label="From", value="English") file_tgt = gr.Dropdown(list(LANGUAGE_CODES.keys()), label="To", value="Korean") f_max_length = gr.Slider(10, 512, value=128, label="Max Length") f_temp = gr.Slider(0.1, 2.0, value=0.7, label="Temperature") file_btn = gr.Button("Translate File") file_result = gr.Textbox(lines=10, label="File Output", interactive=False) file_btn.click(lambda file, src, tgt, ml, temp: translate_file(file.read(), src, tgt, ml, temp), [file_input, file_src, file_tgt, f_max_length, f_temp], file_result) with gr.Tab("📝 Summarizer"): summary_input = gr.Textbox(lines=5, label="Enter text to summarize") summary_length = gr.Slider(32, 512, value=128, step=8, label="Max Length") summary_output = gr.Textbox(lines=5, label="Summary", interactive=False) summarize_btn = gr.Button("Summarize") summarize_btn.click(summarize_text, [summary_input, summary_length], summary_output) with gr.Tab("🔁 Paraphraser"): para_input = gr.Textbox(lines=4, label="Enter text to paraphrase") num_outputs = gr.Slider(1, 5, value=3, step=1, label="Number of Paraphrases") beam_width = gr.Slider(1, 10, value=5, step=1, label="Beam Width") para_output = gr.Textbox(label="Paraphrased Sentences", lines=6) para_btn = gr.Button("Paraphrase") para_btn.click(lambda text, num, beams: "\n\n".join(paraphrase_text(text, num, beams)), [para_input, num_outputs, beam_width], para_output) with gr.Tab("🛠 Grammar Corrector"): grammar_input = gr.Textbox(lines=5, label="Enter sentence to correct") grammar_output = gr.Textbox(label="Corrected Sentence", lines=5) grammar_btn = gr.Button("Correct Grammar") grammar_btn.click(correct_grammar, grammar_input, grammar_output) gr.Markdown(f""" ### â„šī¸ Info - Translator: `{model_name}` on `{device}` - Paraphraser: `tuner007/pegasus_paraphrase` - Summarizer: `facebook/bart-large-cnn` - Grammar Corrector: `{grammar_model_name}` - API Token: {'✅ Found' if HF_API_KEY else '❌ Not Found'} """) if __name__ == "__main__": demo.launch(share=True)