Spaces:
Sleeping
Sleeping
File size: 7,558 Bytes
e81015c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# Copyright 2025 HuggingFace Inc., Daniel Han-Chen & the Unsloth team and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's Transformers and PEFT library,
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/modeling_utils.py
# https://github.com/huggingface/peft/blob/v0.10.0/src/peft/utils/other.py
# and the Unsloth library.
# https://github.com/unslothai/unsloth/blob/July-2024/unsloth/models/_utils.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from functools import WRAPPER_ASSIGNMENTS, partial, wraps
from types import MethodType
from typing import TYPE_CHECKING, Any, Callable, Optional, Union
import torch
from ...extras import logging
from ...extras.constants import LAYERNORM_NAMES
if TYPE_CHECKING:
from transformers import PreTrainedModel
from ...hparams import ModelArguments
logger = logging.get_logger(__name__)
def get_unsloth_gradient_checkpointing_func() -> Callable:
class UnslothGradientCheckpointing(torch.autograd.Function):
r"""Saves VRAM by smartly offloading to RAM."""
@staticmethod
@torch.cuda.amp.custom_fwd
def forward(
ctx: "torch.autograd.Function",
forward_function: "torch.Module",
hidden_states: "torch.Tensor",
*args: Union["torch.Tensor", Any],
) -> "torch.Tensor":
saved_hidden_states = hidden_states.to("cpu", non_blocking=True)
with torch.no_grad():
outputs = forward_function(hidden_states, *args)
ctx.save_for_backward(saved_hidden_states)
ctx.forward_function = forward_function
ctx.args = args
return outputs
@staticmethod
@torch.cuda.amp.custom_bwd
def backward(ctx: "torch.autograd.Function", grad_output: "torch.Tensor") -> "torch.Tensor":
(hidden_states,) = ctx.saved_tensors
hidden_states = hidden_states.to("cuda", non_blocking=True).detach()
hidden_states.requires_grad_(True)
with torch.enable_grad():
outputs = ctx.forward_function(hidden_states, *ctx.args)
output = outputs[0] if isinstance(outputs, tuple) else outputs
torch.autograd.backward(output, grad_output)
return (None, hidden_states.grad) + (None,) * len(ctx.args)
return UnslothGradientCheckpointing.apply
def get_custom_gradient_checkpointing_func(gradient_checkpointing_func: Callable) -> Callable:
r"""Only applies gradient checkpointing to trainable layers."""
@wraps(gradient_checkpointing_func, assigned=WRAPPER_ASSIGNMENTS + ("__self__",))
def custom_gradient_checkpointing_func(func: Callable, *args: Union["torch.Tensor", Any], **kwargs):
if isinstance(func, partial):
module: torch.nn.Module = func.func.__self__
else:
module: torch.nn.Module = func.__self__
has_grad = False
if any(param.requires_grad for param in module.parameters()):
has_grad = True
for arg in args:
if torch.is_tensor(arg) and torch.is_floating_point(arg):
arg.requires_grad_(True)
break # assume the first tensor is always the hidden states
if has_grad:
return gradient_checkpointing_func(func, *args, **kwargs)
else:
return func(*args, **kwargs)
return custom_gradient_checkpointing_func
def _gradient_checkpointing_enable(
self: "PreTrainedModel",
gradient_checkpointing_kwargs: Optional[dict[str, Any]] = None,
use_unsloth_gc: bool = False,
) -> None:
r"""Activates gradient checkpointing for the current model.
Modification of the original method to enable gradient checkpointing for block-wise optimizer.
"""
from torch.utils.checkpoint import checkpoint
if not self.supports_gradient_checkpointing:
raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
if gradient_checkpointing_kwargs is None:
gradient_checkpointing_kwargs = {"use_reentrant": True}
if use_unsloth_gc:
gradient_checkpointing_func = get_unsloth_gradient_checkpointing_func()
else:
gradient_checkpointing_func = partial(checkpoint, **gradient_checkpointing_kwargs)
gradient_checkpointing_func = get_custom_gradient_checkpointing_func(gradient_checkpointing_func)
if "value" in inspect.signature(self._set_gradient_checkpointing).parameters: # old GC format
self.apply(partial(self._set_gradient_checkpointing, value=True))
self.enable_input_require_grads()
logger.warning_rank0_once("You are using the old GC format, some features (e.g. BAdam) will be invalid.")
else: # have already enabled input require gradients
self._set_gradient_checkpointing(enable=True, gradient_checkpointing_func=gradient_checkpointing_func)
def _fp32_forward_post_hook(
module: "torch.nn.Module", args: tuple["torch.Tensor"], output: "torch.Tensor"
) -> "torch.Tensor":
return output.to(torch.float32)
def prepare_model_for_training(model: "PreTrainedModel", model_args: "ModelArguments") -> None:
r"""Prepare the model before training.
Include:
(1) cast the layernorm in fp32
(2) make output embedding layer require grads
(3) add the upcasting of the lm_head in fp32.
"""
if model_args.upcast_layernorm:
logger.info_rank0("Upcasting layernorm weights in float32.")
for name, param in model.named_parameters():
if param.ndim == 1 and any(ln_name in name for ln_name in LAYERNORM_NAMES):
param.data = param.data.to(torch.float32)
if not model_args.disable_gradient_checkpointing:
if not getattr(model, "supports_gradient_checkpointing", False):
logger.warning_rank0("Current model does not support gradient checkpointing.")
else:
# use_reentrant=False might increase VRAM usage (have not been empirically verified yet)
# According to: https://github.com/huggingface/transformers/issues/28339
gradient_checkpointing_enable = partial(
_gradient_checkpointing_enable, use_unsloth_gc=model_args.use_unsloth_gc
)
model.gradient_checkpointing_enable = MethodType(gradient_checkpointing_enable, model)
model.gradient_checkpointing_enable(
gradient_checkpointing_kwargs={"use_reentrant": model_args.use_reentrant_gc}
)
setattr(model.config, "use_cache", False) # turn off when gradient checkpointing is enabled
logger.info_rank0("Gradient checkpointing enabled.")
if model_args.upcast_lmhead_output:
output_layer = model.get_output_embeddings()
if isinstance(output_layer, torch.nn.Linear) and output_layer.weight.dtype != torch.float32:
logger.info_rank0("Upcasting lm_head outputs in float32.")
output_layer.register_forward_hook(_fp32_forward_post_hook)
|