# Copyright 2025 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from types import MethodType from typing import TYPE_CHECKING, Optional import torch from transformers import Trainer from typing_extensions import override from ...extras.packages import is_transformers_version_greater_than from ..callbacks import SaveProcessorCallback from ..trainer_utils import create_custom_optimizer, create_custom_scheduler if TYPE_CHECKING: from transformers import ProcessorMixin from ...hparams import FinetuningArguments class CustomTrainer(Trainer): r"""Inherit Trainer for custom optimizer.""" def __init__( self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs ) -> None: if is_transformers_version_greater_than("4.46"): kwargs["processing_class"] = kwargs.pop("tokenizer") super().__init__(**kwargs) if processor is not None: # avoid wrong loss under gradient accumulation # https://github.com/huggingface/transformers/pull/36044#issuecomment-2746657112 self.model_accepts_loss_kwargs = False self.finetuning_args = finetuning_args if processor is not None: self.add_callback(SaveProcessorCallback(processor)) if finetuning_args.use_badam: from badam import BAdamCallback, clip_grad_norm_old_version # type: ignore self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator) self.add_callback(BAdamCallback) @override def create_optimizer(self) -> "torch.optim.Optimizer": if self.optimizer is None: self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args) return super().create_optimizer() @override def create_scheduler( self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None ) -> "torch.optim.lr_scheduler.LRScheduler": create_custom_scheduler(self.args, num_training_steps, optimizer) return super().create_scheduler(num_training_steps, optimizer) @override def _get_train_sampler(self) -> Optional["torch.utils.data.Sampler"]: if self.finetuning_args.disable_shuffling: return torch.utils.data.SequentialSampler(self.train_dataset) return super()._get_train_sampler() @override def compute_loss(self, model, inputs, *args, **kwargs): return super().compute_loss(model, inputs, *args, **kwargs)