Light-A-Video / gradio_app.py
fffiloni's picture
Update gradio_app.py
149479b verified
import yaml
import tempfile
import gradio as gr
import os
import shutil
import torch
is_shared_ui = True if "fffiloni/Light-A-Video" in os.environ['SPACE_ID'] else False
is_gpu_associated = torch.cuda.is_available()
import imageio
import argparse
from types import MethodType
import safetensors.torch as sf
import torch.nn.functional as F
from omegaconf import OmegaConf
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import MotionAdapter, EulerAncestralDiscreteScheduler, AutoencoderKL
from diffusers import AutoencoderKL, UNet2DConditionModel, DPMSolverMultistepScheduler
from diffusers.models.attention_processor import AttnProcessor2_0
from torch.hub import download_url_to_file
from src.ic_light import BGSource
from src.animatediff_pipe import AnimateDiffVideoToVideoPipeline
from src.ic_light_pipe import StableDiffusionImg2ImgPipeline
from utils.tools import read_video, set_all_seed
from huggingface_hub import snapshot_download, hf_hub_download
if not is_shared_ui and is_gpu_associated:
hf_hub_download(
repo_id='lllyasviel/ic-light',
filename='iclight_sd15_fc.safetensors',
local_dir='./models'
)
snapshot_download(
repo_id="stablediffusionapi/realistic-vision-v51",
local_dir="./models/stablediffusionapi/realistic-vision-v51"
)
snapshot_download(
repo_id="guoyww/animatediff-motion-adapter-v1-5-3",
local_dir="./models/guoyww/animatediff-motion-adapter-v1-5-3"
)
def main(args):
config = OmegaConf.load(args.config)
device = torch.device('cuda')
adopted_dtype = torch.float16
set_all_seed(42)
## vdm model
adapter = MotionAdapter.from_pretrained(args.motion_adapter_model)
## pipeline
pipe = AnimateDiffVideoToVideoPipeline.from_pretrained(args.sd_model, motion_adapter=adapter)
eul_scheduler = EulerAncestralDiscreteScheduler.from_pretrained(
args.sd_model,
subfolder="scheduler",
beta_schedule="linear",
)
pipe.scheduler = eul_scheduler
pipe.enable_vae_slicing()
pipe = pipe.to(device=device, dtype=adopted_dtype)
pipe.vae.requires_grad_(False)
pipe.unet.requires_grad_(False)
## ic-light model
tokenizer = CLIPTokenizer.from_pretrained(args.sd_model, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(args.sd_model, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(args.sd_model, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(args.sd_model, subfolder="unet")
with torch.no_grad():
new_conv_in = torch.nn.Conv2d(8, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
new_conv_in.weight.zero_() #torch.Size([320, 8, 3, 3])
new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
new_conv_in.bias = unet.conv_in.bias
unet.conv_in = new_conv_in
unet_original_forward = unet.forward
def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs):
c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample)
c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0)
new_sample = torch.cat([sample, c_concat], dim=1)
kwargs['cross_attention_kwargs'] = {}
return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs)
unet.forward = hooked_unet_forward
## ic-light model loader
if not os.path.exists(args.ic_light_model):
download_url_to_file(url='https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fc.safetensors',
dst=args.ic_light_model)
sd_offset = sf.load_file(args.ic_light_model)
sd_origin = unet.state_dict()
sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()}
unet.load_state_dict(sd_merged, strict=True)
del sd_offset, sd_origin, sd_merged
text_encoder = text_encoder.to(device=device, dtype=adopted_dtype)
vae = vae.to(device=device, dtype=adopted_dtype)
unet = unet.to(device=device, dtype=adopted_dtype)
unet.set_attn_processor(AttnProcessor2_0())
vae.set_attn_processor(AttnProcessor2_0())
# Consistent light attention
@torch.inference_mode()
def custom_forward_CLA(self,
hidden_states,
gamma=config.get("gamma", 0.5),
encoder_hidden_states=None,
attention_mask=None,
cross_attention_kwargs=None
):
batch_size, sequence_length, channel = hidden_states.shape
residual = hidden_states
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
if attention_mask is not None:
if attention_mask.shape[-1] != query.shape[1]:
target_length = query.shape[1]
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
query = self.to_q(hidden_states)
key = self.to_k(encoder_hidden_states)
value = self.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // self.heads
query = query.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False)
shape = query.shape
# addition key and value
mean_key = key.reshape(2,-1,shape[1],shape[2],shape[3]).mean(dim=1,keepdim=True)
mean_value = value.reshape(2,-1,shape[1],shape[2],shape[3]).mean(dim=1,keepdim=True)
mean_key = mean_key.expand(-1,shape[0]//2,-1,-1,-1).reshape(shape[0],shape[1],shape[2],shape[3])
mean_value = mean_value.expand(-1,shape[0]//2,-1,-1,-1).reshape(shape[0],shape[1],shape[2],shape[3])
add_hidden_state = F.scaled_dot_product_attention(query, mean_key, mean_value, attn_mask=None, dropout_p=0.0, is_causal=False)
# mix
hidden_states = (1-gamma)*hidden_states + gamma*add_hidden_state
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
hidden_states = self.to_out[0](hidden_states)
hidden_states = self.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if self.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / self.rescale_output_factor
return hidden_states
### attention
@torch.inference_mode()
def prep_unet_self_attention(unet):
for name, module in unet.named_modules():
module_name = type(module).__name__
name_split_list = name.split(".")
cond_1 = name_split_list[0] in "up_blocks"
cond_2 = name_split_list[-1] in ('attn1')
if "Attention" in module_name and cond_1 and cond_2:
cond_3 = name_split_list[1]
if cond_3 not in "3":
module.forward = MethodType(custom_forward_CLA, module)
return unet
## consistency light attention
unet = prep_unet_self_attention(unet)
## ic-light-scheduler
ic_light_scheduler = DPMSolverMultistepScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
algorithm_type="sde-dpmsolver++",
use_karras_sigmas=True,
steps_offset=1
)
ic_light_pipe = StableDiffusionImg2ImgPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=ic_light_scheduler,
safety_checker=None,
requires_safety_checker=False,
feature_extractor=None,
image_encoder=None
)
ic_light_pipe = ic_light_pipe.to(device)
############################# params ######################################
strength = config.get("strength", 0.5)
num_step = config.get("num_step", 25)
text_guide_scale = config.get("text_guide_scale", 2)
seed = config.get("seed")
image_width = config.get("width", 512)
image_height = config.get("height", 512)
n_prompt = config.get("n_prompt", "")
relight_prompt = config.get("relight_prompt", "")
video_path = config.get("video_path", "")
bg_source = BGSource[config.get("bg_source")]
save_path = config.get("save_path")
############################## infer #####################################
generator = torch.manual_seed(seed)
video_name = os.path.basename(video_path)
video_list, video_name = read_video(video_path, image_width, image_height)
print("################## begin ##################")
with torch.no_grad():
num_inference_steps = int(round(num_step / strength))
output = pipe(
ic_light_pipe=ic_light_pipe,
relight_prompt=relight_prompt,
bg_source=bg_source,
video=video_list,
prompt=relight_prompt,
strength=strength,
negative_prompt=n_prompt,
guidance_scale=text_guide_scale,
num_inference_steps=num_inference_steps,
height=image_height,
width=image_width,
generator=generator,
)
frames = output.frames[0]
results_path = f"{save_path}/relight_{video_name}"
imageio.mimwrite(results_path, frames, fps=8)
print(f"relight with bg generation! prompt:{relight_prompt}, light:{bg_source.value}, save in {results_path}.")
return results_path
def infer(n_prompt, relight_prompt, video_path, bg_source,
width, height, strength, gamma, num_step, text_guide_scale, seed, progress=gr.Progress(track_tqdm=True)):
save_path = "./output"
# Ensure output folder is empty
if os.path.exists(save_path):
shutil.rmtree(save_path)
os.makedirs(save_path, exist_ok=True)
config_data = {
"n_prompt": n_prompt,
"relight_prompt": relight_prompt,
"video_path": video_path,
"bg_source": bg_source,
"save_path": save_path,
"width": width,
"height": height,
"strength": strength,
"gamma": gamma,
"num_step": num_step,
"text_guide_scale": text_guide_scale,
"seed": seed
}
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".yaml")
with open(temp_file.name, 'w') as file:
yaml.dump(config_data, file, default_flow_style=False)
config_path = temp_file.name
class Args:
def __init__(self):
self.sd_model = "./models/stablediffusionapi/realistic-vision-v51"
self.motion_adapter_model = "./models/guoyww/animatediff-motion-adapter-v1-5-3"
self.ic_light_model = "./models/iclight_sd15_fc.safetensors"
self.config = config_path
args = Args()
results_path= main(args)
os.remove(config_path)
return results_path
css="""
div#col-container{
margin: 0 auto;
max-width: 1200px;
}
div#warning-duplicate {
background-color: #ebf5ff;
padding: 0 16px 16px;
margin: 0px 0;
color: #030303!important;
}
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p {
color: #0f4592!important;
}
div#warning-duplicate strong {
color: #0f4592;
}
p.actions {
display: flex;
align-items: center;
margin: 20px 0;
}
div#warning-duplicate .actions a {
display: inline-block;
margin-right: 10px;
}
div#warning-setgpu {
background-color: #fff4eb;
padding: 0 16px 16px;
margin: 0px 0;
color: #030303!important;
}
div#warning-setgpu > .gr-prose > h2, div#warning-setgpu > .gr-prose > p {
color: #92220f!important;
}
div#warning-setgpu a, div#warning-setgpu b {
color: #91230f;
}
div#warning-setgpu p.actions > a {
display: inline-block;
background: #1f1f23;
border-radius: 40px;
padding: 6px 24px;
color: antiquewhite;
text-decoration: none;
font-weight: 600;
font-size: 1.2em;
}
div#warning-ready {
background-color: #ecfdf5;
padding: 0 16px 16px;
margin: 0px 0;
color: #030303!important;
}
div#warning-ready > .gr-prose > h2, div#warning-ready > .gr-prose > p {
color: #057857!important;
}
.custom-color {
color: #030303 !important;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Light-A-Video")
gr.Markdown("Training-free Video Relighting via Progressive Light Fusion")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/bcmi/Light-A-Video">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://bujiazi.github.io/light-a-video.github.io/">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://arxiv.org/abs/2502.08590">
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
</a>
<a href="https://huggingface.co/spaces/fffiloni/Light-A-Video?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
<a href="https://huggingface.co/fffiloni">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
</a>
</div>
""")
with gr.Row():
with gr.Column():
video_path = gr.Video(label="Video Path")
with gr.Row():
relight_prompt = gr.Textbox(label="Relight Prompt", scale=3)
bg_source = gr.Dropdown(["NONE", "LEFT", "RIGHT", "BOTTOM", "TOP"], label="Background Source", scale=1)
with gr.Accordion(label="Advanced Settings", open=False):
n_prompt = gr.Textbox(label="Negative Prompt", value="bad quality, worse quality")
with gr.Row():
width = gr.Number(label="Width", value=512)
height = gr.Number(label="Height", value=512)
with gr.Row():
strength = gr.Slider(minimum=0.0, maximum=1.0, label="Strength", value=0.5)
gamma = gr.Slider(minimum=0.0, maximum=1.0, label="Gamma", value=0.5)
with gr.Row():
num_step = gr.Number(label="Number of Steps", value=25)
text_guide_scale = gr.Number(label="Text Guide Scale", value=2)
seed = gr.Number(label="Seed", value=2060)
submit = gr.Button("Run", interactive=False if is_shared_ui else True)
gr.Examples(
examples=[
["./input_animatediff/bear.mp4", "a bear walking on the rock, nature lighting, key light", "TOP"],
["./input_animatediff/boat.mp4", "a boat floating on the sea, sunset", "TOP"],
["./input_animatediff/car.mp4", "a car driving on the street, neon light", "RIGHT"],
["./input_animatediff/cat.mp4", "a cat, red and blue neon light", "LEFT"],
["./input_animatediff/cow.mp4", "a cow drinking water in the river, sunset", "RIGHT"],
["./input_animatediff/flowers.mp4", "A basket of flowers, sunshine, hard light", "LEFT"],
["./input_animatediff/fox.mp4", "a fox, sunlight filtering through trees, dappled light", "LEFT"],
["./input_animatediff/girl.mp4", "a girl, magic lit, sci-fi RGB glowing, key lighting", "BOTTOM"],
["./input_animatediff/girl2.mp4", "an anime girl, neon light", "RIGHT"],
["./input_animatediff/juice.mp4", "Pour juice into a glass, magic golden lit", "RIGHT"],
["./input_animatediff/man2.mp4", "handsome man with glasses, shadow from window, sunshine", "RIGHT"],
["./input_animatediff/man4.mp4", "handsome man with glasses, sunlight through the blinds", "LEFT"],
["./input_animatediff/plane.mp4", "a plane on the runway, bottom neon light", "BOTTOM"],
["./input_animatediff/toy.mp4", "a maneki-neko toy, cozy bedroom illumination", "RIGHT"],
["./input_animatediff/woman.mp4", "a woman with curly hair, natural lighting, warm atmosphere", "LEFT"],
],
inputs=[video_path, relight_prompt, bg_source],
examples_per_page=3
)
with gr.Column():
if is_shared_ui:
top_description = gr.HTML(f'''
<div class="gr-prose">
<h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
Attention: this Space need to be duplicated to work</h2>
<p class="main-message custom-color">
To make it work, <strong>duplicate the Space</strong> and run it on your own profile using a <strong>private</strong> GPU (L40s recommended).<br />
A L40s costs <strong>US$1.80/h</strong>.
</p>
<p class="actions custom-color">
<a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" />
</a>
to start experimenting with this demo
</p>
</div>
''', elem_id="warning-duplicate")
else:
if(is_gpu_associated):
top_description = gr.HTML(f'''
<div class="gr-prose">
<h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
You have successfully associated a GPU to this Space πŸŽ‰</h2>
<p class="custom-color">
You will be billed by the minute from when you activated the GPU until when it is turned off.
</p>
</div>
''', elem_id="warning-ready")
else:
top_description = gr.HTML(f'''
<div class="gr-prose">
<h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
You have successfully duplicated the MimicMotion Space πŸŽ‰</h2>
<p class="custom-color">There's only one step left before you can properly play with this demo: <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a GPU</b> to it (via the Settings tab)</a> and run the app below.
You will be billed by the minute from when you activate the GPU until when it is turned off.</p>
<p class="actions custom-color">
<a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings">πŸ”₯ &nbsp; Set recommended GPU</a>
</p>
</div>
''', elem_id="warning-setgpu")
output = gr.Video(label="Results Path")
submit.click(
fn=infer,
inputs=[n_prompt, relight_prompt, video_path, bg_source,
width, height, strength, gamma, num_step, text_guide_scale, seed],
outputs=[output]
)
demo.queue().launch(show_api=False, show_error=True, ssr_mode=False)