File size: 8,075 Bytes
d708c77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8396ca1
be924b7
 
 
 
 
72c31b6
be924b7
359fce3
d708c77
 
 
 
 
 
 
 
 
 
72c31b6
 
 
 
d708c77
 
 
 
ab72992
d708c77
 
 
 
 
 
ba2ad0b
84316c3
d708c77
 
 
 
221d832
b0c18ca
71f2c1a
 
 
 
 
 
 
 
 
 
 
 
 
d708c77
 
b0c18ca
 
d708c77
 
 
9a116fc
d708c77
b0c18ca
8396ca1
d708c77
c5fe591
d708c77
7edde5e
d708c77
c5fe591
 
 
 
 
 
d708c77
c5fe591
 
d224587
c5fe591
d224587
c5fe591
 
 
 
c62d4cd
 
 
 
 
c5fe591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c62d4cd
d708c77
c5fe591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d708c77
 
b0c18ca
 
76cf10d
d708c77
c5fe591
 
 
b0c18ca
d708c77
3315c31
71f2c1a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Copyright (2023) Tsinghua University, Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gradio as gr
import spaces
from huggingface_hub import snapshot_download

# Download models
snapshot_download(
    repo_id = "fffiloni/SALMONN-7B-PACK",
    local_dir = "./"
)

import argparse
from model import SALMONN

class ff:
    def generate(self, wav_path, prompt, prompt_pattern, num_beams, temperature, top_p):
        print(f'wav_path: {wav_path}, prompt: {prompt}, temperature: {temperature}, num_beams: {num_beams}, top_p: {top_p}')
        return "I'm sorry, but I cannot answer that question as it is not clear what you are asking. Can you please provide more context or clarify your question?"

parser = argparse.ArgumentParser()
parser.add_argument("--device", type=str, default="cuda:0")
parser.add_argument("--ckpt_path", type=str, default="./salmonn_7b_v0.pth")
parser.add_argument("--whisper_path", type=str, default="./whisper_large_v2")
parser.add_argument("--beats_path", type=str, default="./beats/BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt")
parser.add_argument("--vicuna_path", type=str, default="./vicuna-7b-v1.5")
parser.add_argument("--low_resource", action='store_true', default=False)
parser.add_argument("--port", default=9527)

args = parser.parse_args()
args.low_resource = False # for huggingface A10 7b demo
# model = ff()
model = SALMONN(
    ckpt=args.ckpt_path,
    whisper_path=args.whisper_path,
    beats_path=args.beats_path,
    vicuna_path=args.vicuna_path,
    low_resource=args.low_resource,
    lora_alpha=28,
)
model.to(args.device)
model.eval()

@spaces.GPU()
def gradio_answer(speech, text_input, num_beams, temperature, top_p):
    """
    Generate a detailed answer based on speech audio input and user text query using the SALMONN model.
    
    Args:
        speech (str): File path to the uploaded audio file (wav or similar).
        text_input (str): The user’s question or prompt regarding the audio.
        num_beams (int): Number of beams for beam search in generation (controls diversity/quality).
        temperature (float): Sampling temperature for text generation (controls randomness).
        top_p (float): Top-p nucleus sampling parameter (controls diversity by cumulative probability).
    
    Returns:
        str: Generated text response from the SALMONN model that answers or describes the audio based on the prompt.
    """
    
    llm_message = model.generate(
        wav_path=speech,
        prompt=text_input,
        num_beams=num_beams,
        temperature=temperature,
        top_p=top_p,
        max_length=300
    )
    
    return llm_message[0]

title = """<h1 style="text-align: center;">SALMONN: Speech Audio Language Music Open Neural Network</h1>"""
image_src = """<h1 align="center"><a href="https://github.com/bytedance/SALMONN"><img src="https://raw.githubusercontent.com/bytedance/SALMONN/main/resource/salmon.png", alt="SALMONN" border="0" style="margin: 0 auto; height: 200px;" /></a> </h1>"""
description = """<h3 style="text-align: center;">This is a simplified gradio demo for <a href="https://huggingface.co/tsinghua-ee/SALMONN-7B" target="_blank">SALMONN-7B</a>. <br />To experience SALMONN-13B, you can go to <a href="https://bytedance.github.io/SALMONN">https://bytedance.github.io/SALMONN</a>.<br /> Upload your audio and ask a question!</h3>"""

css = """
div#col-container {
    margin: 0 auto;
    max-width: 840px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML(title)
        #gr.Markdown(image_src)
        gr.HTML(description)
    
        with gr.Row():
            with gr.Column():
                speech = gr.Audio(label="Audio", type='filepath')
                
                with gr.Row():
                    text_input = gr.Textbox(label='User question', placeholder='Please upload your audio first', interactive=True)
                    submit_btn = gr.Button("Submit")
                answer = gr.Textbox(label="Salmonn answer")
    
                with gr.Accordion("Advanced Settings", open=False):
                    num_beams = gr.Slider(
                        minimum=1,
                        maximum=10,
                        value=4,
                        step=1,
                        interactive=True,
                        label="beam search numbers",
                    )
        
                    top_p = gr.Slider(
                        minimum=0.1,
                        maximum=1.0,
                        value=0.9,
                        step=0.1,
                        interactive=True,
                        label="top p",
                    )
        
                    temperature = gr.Slider(
                        minimum=0.8,
                        maximum=2.0,
                        value=1.0,
                        step=0.1,
                        interactive=False,
                        label="temperature",
                    )
                

        with gr.Row():
            examples = gr.Examples(
                examples = [
                    ["resource/audio_demo/gunshots.wav", "Recognize the speech and give me the transcription."],
                    ["resource/audio_demo/gunshots.wav", "Listen to the speech and translate it into German."],
                    ["resource/audio_demo/gunshots.wav", "Provide the phonetic transcription for the speech."],
                    ["resource/audio_demo/gunshots.wav", "Please describe the audio."],
                    ["resource/audio_demo/gunshots.wav", "Recognize what the speaker says and describe the background audio at the same time."],
                    ["resource/audio_demo/gunshots.wav", "Use your strong reasoning skills to answer the speaker's question in detail based on the background sound."],
                    ["resource/audio_demo/duck.wav", "Please list each event in the audio in order."],
                    ["resource/audio_demo/duck.wav", "Based on the audio, write a story in detail. Your story should be highly related to the audio."],
                    ["resource/audio_demo/duck.wav", "How many speakers did you hear in this audio? Who are they?"],
                    ["resource/audio_demo/excitement.wav", "Describe the emotion of the speaker."],
                    ["resource/audio_demo/mountain.wav", "Please answer the question in detail."],
                    ["resource/audio_demo/jobs.wav", "Give me only three keywords of the text. Explain your reason."],
                    ["resource/audio_demo/2_30.wav", "What is the time mentioned in the speech?"],
                    ["resource/audio_demo/music.wav", "Please describe the music in detail."],
                    ["resource/audio_demo/music.wav", "What is the emotion of the music? Explain the reason in detail."],
                    ["resource/audio_demo/music.wav", "Can you write some lyrics of the song?"],
                    ["resource/audio_demo/music.wav", "Give me a title of the music based on its rhythm and emotion."]
                ],
                inputs=[speech, text_input]
            )
        
    
    text_input.submit(
        gradio_answer, [speech, text_input, num_beams, temperature, top_p], [answer], show_api=False
    )
    submit_btn.click(
        gradio_answer, [speech, text_input, num_beams, temperature, top_p], [answer]
    )
    

# demo.launch(share=True, enable_queue=True, server_port=int(args.port))
demo.queue(max_size=20).launch(share=False, ssr_mode=False, mcp_server=True)