File size: 3,145 Bytes
26557da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import torch
from data.video import save_video
from wan_loader import load_wan_pipe
from models.set_condition_branch import set_stand_in
from preprocessor import FaceProcessor
import argparse

parser = argparse.ArgumentParser()

parser.add_argument(
    "--ip_image",
    type=str,
    default="test/input/first_frame.png",
    help="Input face image path or URL",
)
parser.add_argument(
    "--reference_video",
    type=str,
    default="test/input/pose.mp4",
    help="reference_video path",
)
parser.add_argument(
    "--reference_image",
    default="test/input/first_frame.png",
    type=str,
    help="reference_video path",
)
parser.add_argument(
    "--vace_scale",
    type=float,
    default=0.8,
    help="Scaling factor for VACE.",
)
parser.add_argument(
    "--prompt",
    type=str,
    default="一个女人举起双手",
    help="Text prompt for video generation",
)
parser.add_argument(
    "--output", type=str, default="test/output/woman.mp4", help="Output video file path"
)
parser.add_argument(
    "--seed", type=int, default=0, help="Random seed for reproducibility"
)
parser.add_argument(
    "--num_inference_steps", type=int, default=20, help="Number of inference steps"
)
parser.add_argument(
    "--vace_path",
    type=str,
    default="checkpoints/VACE/",
    help="Path to base model checkpoint",
)

parser.add_argument(
    "--negative_prompt",
    type=str,
    default="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走",
    help="Negative prompt to avoid unwanted features",
)
parser.add_argument("--tiled", action="store_true", help="Enable tiled mode")
parser.add_argument(
    "--fps", type=int, default=25, help="Frames per second for output video"
)
parser.add_argument(
    "--quality", type=int, default=9, help="Output video quality (1-9)"
)
parser.add_argument(
    "--stand_in_path",
    type=str,
    default="checkpoints/Stand-In/Stand-In_wan2.1_T2V_14B_ver1.0.ckpt",
    help="Path to LoRA weights checkpoint",
)
parser.add_argument(
    "--antelopv2_path",
    type=str,
    default="checkpoints/antelopev2",
    help="Path to AntelopeV2 model checkpoint",
)

args = parser.parse_args()


face_processor = FaceProcessor(antelopv2_path=args.antelopv2_path)
ip_image = face_processor.process(args.ip_image)

pipe = load_wan_pipe(base_path=args.vace_path, use_vace=True, torch_dtype=torch.bfloat16)

set_stand_in(
    pipe,
    model_path=args.stand_in_path,
)

video = pipe(
    prompt=args.prompt,
    vace_video=args.reference_video,
    vace_reference_image=args.reference_image,
    negative_prompt=args.negative_prompt,
    vace_scale=args.vace_scale,
    seed=args.seed,
    ip_image=ip_image,
    num_inference_steps=args.num_inference_steps,
    tiled=args.tiled,
)
save_video(video, args.output, fps=args.fps, quality=args.quality)