Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,359 Bytes
26557da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import torch
import torch.nn as nn
import numpy as np
from einops import rearrange
import os
from typing_extensions import Literal
class SimpleAdapter(nn.Module):
def __init__(self, in_dim, out_dim, kernel_size, stride, num_residual_blocks=1):
super(SimpleAdapter, self).__init__()
# Pixel Unshuffle: reduce spatial dimensions by a factor of 8
self.pixel_unshuffle = nn.PixelUnshuffle(downscale_factor=8)
# Convolution: reduce spatial dimensions by a factor
# of 2 (without overlap)
self.conv = nn.Conv2d(
in_dim * 64, out_dim, kernel_size=kernel_size, stride=stride, padding=0
)
# Residual blocks for feature extraction
self.residual_blocks = nn.Sequential(
*[ResidualBlock(out_dim) for _ in range(num_residual_blocks)]
)
def forward(self, x):
# Reshape to merge the frame dimension into batch
bs, c, f, h, w = x.size()
x = x.permute(0, 2, 1, 3, 4).contiguous().view(bs * f, c, h, w)
# Pixel Unshuffle operation
x_unshuffled = self.pixel_unshuffle(x)
# Convolution operation
x_conv = self.conv(x_unshuffled)
# Feature extraction with residual blocks
out = self.residual_blocks(x_conv)
# Reshape to restore original bf dimension
out = out.view(bs, f, out.size(1), out.size(2), out.size(3))
# Permute dimensions to reorder (if needed), e.g., swap channels and feature frames
out = out.permute(0, 2, 1, 3, 4)
return out
def process_camera_coordinates(
self,
direction: Literal[
"Left", "Right", "Up", "Down", "LeftUp", "LeftDown", "RightUp", "RightDown"
],
length: int,
height: int,
width: int,
speed: float = 1 / 54,
origin=(
0,
0.532139961,
0.946026558,
0.5,
0.5,
0,
0,
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
),
):
if origin is None:
origin = (
0,
0.532139961,
0.946026558,
0.5,
0.5,
0,
0,
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
)
coordinates = generate_camera_coordinates(direction, length, speed, origin)
plucker_embedding = process_pose_file(coordinates, width, height)
return plucker_embedding
class ResidualBlock(nn.Module):
def __init__(self, dim):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(dim, dim, kernel_size=3, padding=1)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(dim, dim, kernel_size=3, padding=1)
def forward(self, x):
residual = x
out = self.relu(self.conv1(x))
out = self.conv2(out)
out += residual
return out
class Camera(object):
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py"""
def __init__(self, entry):
fx, fy, cx, cy = entry[1:5]
self.fx = fx
self.fy = fy
self.cx = cx
self.cy = cy
w2c_mat = np.array(entry[7:]).reshape(3, 4)
w2c_mat_4x4 = np.eye(4)
w2c_mat_4x4[:3, :] = w2c_mat
self.w2c_mat = w2c_mat_4x4
self.c2w_mat = np.linalg.inv(w2c_mat_4x4)
def get_relative_pose(cam_params):
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py"""
abs_w2cs = [cam_param.w2c_mat for cam_param in cam_params]
abs_c2ws = [cam_param.c2w_mat for cam_param in cam_params]
cam_to_origin = 0
target_cam_c2w = np.array(
[[1, 0, 0, 0], [0, 1, 0, -cam_to_origin], [0, 0, 1, 0], [0, 0, 0, 1]]
)
abs2rel = target_cam_c2w @ abs_w2cs[0]
ret_poses = [
target_cam_c2w,
] + [abs2rel @ abs_c2w for abs_c2w in abs_c2ws[1:]]
ret_poses = np.array(ret_poses, dtype=np.float32)
return ret_poses
def custom_meshgrid(*args):
# torch>=2.0.0 only
return torch.meshgrid(*args, indexing="ij")
def ray_condition(K, c2w, H, W, device):
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py"""
# c2w: B, V, 4, 4
# K: B, V, 4
B = K.shape[0]
j, i = custom_meshgrid(
torch.linspace(0, H - 1, H, device=device, dtype=c2w.dtype),
torch.linspace(0, W - 1, W, device=device, dtype=c2w.dtype),
)
i = i.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW]
j = j.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW]
fx, fy, cx, cy = K.chunk(4, dim=-1) # B,V, 1
zs = torch.ones_like(i) # [B, HxW]
xs = (i - cx) / fx * zs
ys = (j - cy) / fy * zs
zs = zs.expand_as(ys)
directions = torch.stack((xs, ys, zs), dim=-1) # B, V, HW, 3
directions = directions / directions.norm(dim=-1, keepdim=True) # B, V, HW, 3
rays_d = directions @ c2w[..., :3, :3].transpose(-1, -2) # B, V, 3, HW
rays_o = c2w[..., :3, 3] # B, V, 3
rays_o = rays_o[:, :, None].expand_as(rays_d) # B, V, 3, HW
# c2w @ dirctions
rays_dxo = torch.linalg.cross(rays_o, rays_d)
plucker = torch.cat([rays_dxo, rays_d], dim=-1)
plucker = plucker.reshape(B, c2w.shape[1], H, W, 6) # B, V, H, W, 6
# plucker = plucker.permute(0, 1, 4, 2, 3)
return plucker
def process_pose_file(
cam_params,
width=672,
height=384,
original_pose_width=1280,
original_pose_height=720,
device="cpu",
return_poses=False,
):
if return_poses:
return cam_params
else:
cam_params = [Camera(cam_param) for cam_param in cam_params]
sample_wh_ratio = width / height
pose_wh_ratio = (
original_pose_width / original_pose_height
) # Assuming placeholder ratios, change as needed
if pose_wh_ratio > sample_wh_ratio:
resized_ori_w = height * pose_wh_ratio
for cam_param in cam_params:
cam_param.fx = resized_ori_w * cam_param.fx / width
else:
resized_ori_h = width / pose_wh_ratio
for cam_param in cam_params:
cam_param.fy = resized_ori_h * cam_param.fy / height
intrinsic = np.asarray(
[
[
cam_param.fx * width,
cam_param.fy * height,
cam_param.cx * width,
cam_param.cy * height,
]
for cam_param in cam_params
],
dtype=np.float32,
)
K = torch.as_tensor(intrinsic)[None] # [1, 1, 4]
c2ws = get_relative_pose(
cam_params
) # Assuming this function is defined elsewhere
c2ws = torch.as_tensor(c2ws)[None] # [1, n_frame, 4, 4]
plucker_embedding = (
ray_condition(K, c2ws, height, width, device=device)[0]
.permute(0, 3, 1, 2)
.contiguous()
) # V, 6, H, W
plucker_embedding = plucker_embedding[None]
plucker_embedding = rearrange(plucker_embedding, "b f c h w -> b f h w c")[0]
return plucker_embedding
def generate_camera_coordinates(
direction: Literal[
"Left", "Right", "Up", "Down", "LeftUp", "LeftDown", "RightUp", "RightDown"
],
length: int,
speed: float = 1 / 54,
origin=(
0,
0.532139961,
0.946026558,
0.5,
0.5,
0,
0,
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
),
):
coordinates = [list(origin)]
while len(coordinates) < length:
coor = coordinates[-1].copy()
if "Left" in direction:
coor[9] += speed
if "Right" in direction:
coor[9] -= speed
if "Up" in direction:
coor[13] += speed
if "Down" in direction:
coor[13] -= speed
coordinates.append(coor)
return coordinates
|