Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,275 Bytes
26557da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import torch, warnings, glob, os
import numpy as np
from PIL import Image
from einops import repeat, reduce
from typing import Optional, Union
from dataclasses import dataclass
import numpy as np
from PIL import Image
from typing import Optional
class BasePipeline(torch.nn.Module):
def __init__(
self,
device="cuda",
torch_dtype=torch.float16,
height_division_factor=64,
width_division_factor=64,
time_division_factor=None,
time_division_remainder=None,
):
super().__init__()
# The device and torch_dtype is used for the storage of intermediate variables, not models.
self.device = device
self.torch_dtype = torch_dtype
# The following parameters are used for shape check.
self.height_division_factor = height_division_factor
self.width_division_factor = width_division_factor
self.time_division_factor = time_division_factor
self.time_division_remainder = time_division_remainder
self.vram_management_enabled = False
def to(self, *args, **kwargs):
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(
*args, **kwargs
)
if device is not None:
self.device = device
if dtype is not None:
self.torch_dtype = dtype
super().to(*args, **kwargs)
return self
def check_resize_height_width(self, height, width, num_frames=None):
# Shape check
if height % self.height_division_factor != 0:
height = (
(height + self.height_division_factor - 1)
// self.height_division_factor
* self.height_division_factor
)
print(
f"height % {self.height_division_factor} != 0. We round it up to {height}."
)
if width % self.width_division_factor != 0:
width = (
(width + self.width_division_factor - 1)
// self.width_division_factor
* self.width_division_factor
)
print(
f"width % {self.width_division_factor} != 0. We round it up to {width}."
)
if num_frames is None:
return height, width
else:
if num_frames % self.time_division_factor != self.time_division_remainder:
num_frames = (
(num_frames + self.time_division_factor - 1)
// self.time_division_factor
* self.time_division_factor
+ self.time_division_remainder
)
print(
f"num_frames % {self.time_division_factor} != {self.time_division_remainder}. We round it up to {num_frames}."
)
return height, width, num_frames
def preprocess_image(
self,
image,
torch_dtype=None,
device=None,
pattern="B C H W",
min_value=-1,
max_value=1,
):
# Transform a PIL.Image to torch.Tensor
image = torch.Tensor(np.array(image, dtype=np.float32))
image = image.to(
dtype=torch_dtype or self.torch_dtype, device=device or self.device
)
image = image * ((max_value - min_value) / 255) + min_value
image = repeat(
image, f"H W C -> {pattern}", **({"B": 1} if "B" in pattern else {})
)
return image
def preprocess_video(
self,
video,
torch_dtype=None,
device=None,
pattern="B C T H W",
min_value=-1,
max_value=1,
):
# Transform a list of PIL.Image to torch.Tensor
video = [
self.preprocess_image(
image,
torch_dtype=torch_dtype,
device=device,
min_value=min_value,
max_value=max_value,
)
for image in video
]
video = torch.stack(video, dim=pattern.index("T") // 2)
return video
def vae_output_to_image(
self, vae_output, pattern="B C H W", min_value=-1, max_value=1
):
# Transform a torch.Tensor to PIL.Image
if pattern != "H W C":
vae_output = reduce(vae_output, f"{pattern} -> H W C", reduction="mean")
image = ((vae_output - min_value) * (255 / (max_value - min_value))).clip(
0, 255
)
image = image.to(device="cpu", dtype=torch.uint8)
image = Image.fromarray(image.numpy())
return image
def vae_output_to_video(
self, vae_output, pattern="B C T H W", min_value=-1, max_value=1
):
# Transform a torch.Tensor to list of PIL.Image
if pattern != "T H W C":
vae_output = reduce(vae_output, f"{pattern} -> T H W C", reduction="mean")
video = [
self.vae_output_to_image(
image, pattern="H W C", min_value=min_value, max_value=max_value
)
for image in vae_output
]
return video
def load_models_to_device(self, model_names=[]):
if self.vram_management_enabled:
# offload models
for name, model in self.named_children():
if name not in model_names:
if (
hasattr(model, "vram_management_enabled")
and model.vram_management_enabled
):
for module in model.modules():
if hasattr(module, "offload"):
module.offload()
else:
model.cpu()
torch.cuda.empty_cache()
# onload models
for name, model in self.named_children():
if name in model_names:
if (
hasattr(model, "vram_management_enabled")
and model.vram_management_enabled
):
for module in model.modules():
if hasattr(module, "onload"):
module.onload()
else:
model.to(self.device)
def generate_noise(
self,
shape,
seed=None,
rand_device="cpu",
rand_torch_dtype=torch.float32,
device=None,
torch_dtype=None,
):
# Initialize Gaussian noise
generator = (
None if seed is None else torch.Generator(rand_device).manual_seed(seed)
)
noise = torch.randn(
shape, generator=generator, device=rand_device, dtype=rand_torch_dtype
)
noise = noise.to(
dtype=torch_dtype or self.torch_dtype, device=device or self.device
)
return noise
def enable_cpu_offload(self):
warnings.warn(
"`enable_cpu_offload` will be deprecated. Please use `enable_vram_management`."
)
self.vram_management_enabled = True
def get_vram(self):
return torch.cuda.mem_get_info(self.device)[1] / (1024**3)
def freeze_except(self, model_names):
for name, model in self.named_children():
if name in model_names:
model.train()
model.requires_grad_(True)
else:
model.eval()
model.requires_grad_(False)
@dataclass
class ModelConfig:
path: Union[str, list[str]] = None
model_id: str = None
origin_file_pattern: Union[str, list[str]] = None
download_resource: str = "ModelScope"
offload_device: Optional[Union[str, torch.device]] = None
offload_dtype: Optional[torch.dtype] = None
local_model_path: str = None
skip_download: bool = False
def download_if_necessary(self, use_usp=False):
if self.path is None:
# Check model_id and origin_file_pattern
if self.model_id is None:
raise ValueError(
f"""No valid model files. Please use `ModelConfig(path="xxx")` or `ModelConfig(model_id="xxx/yyy", origin_file_pattern="zzz")`."""
)
# Skip if not in rank 0
if use_usp:
import torch.distributed as dist
skip_download = self.skip_download or dist.get_rank() != 0
else:
skip_download = self.skip_download
# Check whether the origin path is a folder
if self.origin_file_pattern is None or self.origin_file_pattern == "":
self.origin_file_pattern = ""
allow_file_pattern = None
is_folder = True
elif isinstance(
self.origin_file_pattern, str
) and self.origin_file_pattern.endswith("/"):
allow_file_pattern = self.origin_file_pattern + "*"
is_folder = True
else:
allow_file_pattern = self.origin_file_pattern
is_folder = False
# Download
if not skip_download:
if self.local_model_path is None:
self.local_model_path = "./models"
downloaded_files = glob.glob(
self.origin_file_pattern,
root_dir=os.path.join(self.local_model_path, self.model_id),
)
snapshot_download(
self.model_id,
local_dir=os.path.join(self.local_model_path, self.model_id),
allow_file_pattern=allow_file_pattern,
ignore_file_pattern=downloaded_files,
local_files_only=False,
)
# Let rank 1, 2, ... wait for rank 0
if use_usp:
import torch.distributed as dist
dist.barrier(device_ids=[dist.get_rank()])
# Return downloaded files
if is_folder:
self.path = os.path.join(
self.local_model_path, self.model_id, self.origin_file_pattern
)
else:
self.path = glob.glob(
os.path.join(
self.local_model_path, self.model_id, self.origin_file_pattern
)
)
if isinstance(self.path, list) and len(self.path) == 1:
self.path = self.path[0]
class PipelineUnit:
def __init__(
self,
seperate_cfg: bool = False,
take_over: bool = False,
input_params: tuple[str] = None,
input_params_posi: dict[str, str] = None,
input_params_nega: dict[str, str] = None,
onload_model_names: tuple[str] = None,
):
self.seperate_cfg = seperate_cfg
self.take_over = take_over
self.input_params = input_params
self.input_params_posi = input_params_posi
self.input_params_nega = input_params_nega
self.onload_model_names = onload_model_names
def process(
self, pipe: BasePipeline, inputs: dict, positive=True, **kwargs
) -> dict:
raise NotImplementedError("`process` is not implemented.")
class PipelineUnitRunner:
def __init__(self):
pass
def __call__(
self,
unit: PipelineUnit,
pipe: BasePipeline,
inputs_shared: dict,
inputs_posi: dict,
inputs_nega: dict,
) -> tuple[dict, dict]:
if unit.take_over:
# Let the pipeline unit take over this function.
inputs_shared, inputs_posi, inputs_nega = unit.process(
pipe,
inputs_shared=inputs_shared,
inputs_posi=inputs_posi,
inputs_nega=inputs_nega,
)
elif unit.seperate_cfg:
# Positive side
processor_inputs = {
name: inputs_posi.get(name_)
for name, name_ in unit.input_params_posi.items()
}
if unit.input_params is not None:
for name in unit.input_params:
processor_inputs[name] = inputs_shared.get(name)
processor_outputs = unit.process(pipe, **processor_inputs)
inputs_posi.update(processor_outputs)
# Negative side
if inputs_shared["cfg_scale"] != 1:
processor_inputs = {
name: inputs_nega.get(name_)
for name, name_ in unit.input_params_nega.items()
}
if unit.input_params is not None:
for name in unit.input_params:
processor_inputs[name] = inputs_shared.get(name)
processor_outputs = unit.process(pipe, **processor_inputs)
inputs_nega.update(processor_outputs)
else:
inputs_nega.update(processor_outputs)
else:
processor_inputs = {
name: inputs_shared.get(name) for name in unit.input_params
}
processor_outputs = unit.process(pipe, **processor_inputs)
inputs_shared.update(processor_outputs)
return inputs_shared, inputs_posi, inputs_nega
|