Stand-In / models /wan_video_vae.py
fffiloni's picture
Migrated from GitHub
26557da verified
from einops import rearrange, repeat
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm
CACHE_T = 2
def check_is_instance(model, module_class):
if isinstance(model, module_class):
return True
if hasattr(model, "module") and isinstance(model.module, module_class):
return True
return False
def block_causal_mask(x, block_size):
# params
b, n, s, _, device = *x.size(), x.device
assert s % block_size == 0
num_blocks = s // block_size
# build mask
mask = torch.zeros(b, n, s, s, dtype=torch.bool, device=device)
for i in range(num_blocks):
mask[:, :, i * block_size : (i + 1) * block_size, : (i + 1) * block_size] = 1
return mask
class CausalConv3d(nn.Conv3d):
"""
Causal 3d convolusion.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._padding = (
self.padding[2],
self.padding[2],
self.padding[1],
self.padding[1],
2 * self.padding[0],
0,
)
self.padding = (0, 0, 0)
def forward(self, x, cache_x=None):
padding = list(self._padding)
if cache_x is not None and self._padding[4] > 0:
cache_x = cache_x.to(x.device)
x = torch.cat([cache_x, x], dim=2)
padding[4] -= cache_x.shape[2]
x = F.pad(x, padding)
return super().forward(x)
class RMS_norm(nn.Module):
def __init__(self, dim, channel_first=True, images=True, bias=False):
super().__init__()
broadcastable_dims = (1, 1, 1) if not images else (1, 1)
shape = (dim, *broadcastable_dims) if channel_first else (dim,)
self.channel_first = channel_first
self.scale = dim**0.5
self.gamma = nn.Parameter(torch.ones(shape))
self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.0
def forward(self, x):
return (
F.normalize(x, dim=(1 if self.channel_first else -1))
* self.scale
* self.gamma
+ self.bias
)
class Upsample(nn.Upsample):
def forward(self, x):
"""
Fix bfloat16 support for nearest neighbor interpolation.
"""
return super().forward(x.float()).type_as(x)
class Resample(nn.Module):
def __init__(self, dim, mode):
assert mode in (
"none",
"upsample2d",
"upsample3d",
"downsample2d",
"downsample3d",
)
super().__init__()
self.dim = dim
self.mode = mode
# layers
if mode == "upsample2d":
self.resample = nn.Sequential(
Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
nn.Conv2d(dim, dim // 2, 3, padding=1),
)
elif mode == "upsample3d":
self.resample = nn.Sequential(
Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
nn.Conv2d(dim, dim // 2, 3, padding=1),
)
self.time_conv = CausalConv3d(dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
elif mode == "downsample2d":
self.resample = nn.Sequential(
nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2))
)
elif mode == "downsample3d":
self.resample = nn.Sequential(
nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2))
)
self.time_conv = CausalConv3d(
dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0)
)
else:
self.resample = nn.Identity()
def forward(self, x, feat_cache=None, feat_idx=[0]):
b, c, t, h, w = x.size()
if self.mode == "upsample3d":
if feat_cache is not None:
idx = feat_idx[0]
if feat_cache[idx] is None:
feat_cache[idx] = "Rep"
feat_idx[0] += 1
else:
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if (
cache_x.shape[2] < 2
and feat_cache[idx] is not None
and feat_cache[idx] != "Rep"
):
# cache last frame of last two chunk
cache_x = torch.cat(
[
feat_cache[idx][:, :, -1, :, :]
.unsqueeze(2)
.to(cache_x.device),
cache_x,
],
dim=2,
)
if (
cache_x.shape[2] < 2
and feat_cache[idx] is not None
and feat_cache[idx] == "Rep"
):
cache_x = torch.cat(
[torch.zeros_like(cache_x).to(cache_x.device), cache_x],
dim=2,
)
if feat_cache[idx] == "Rep":
x = self.time_conv(x)
else:
x = self.time_conv(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
x = x.reshape(b, 2, c, t, h, w)
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), 3)
x = x.reshape(b, c, t * 2, h, w)
t = x.shape[2]
x = rearrange(x, "b c t h w -> (b t) c h w")
x = self.resample(x)
x = rearrange(x, "(b t) c h w -> b c t h w", t=t)
if self.mode == "downsample3d":
if feat_cache is not None:
idx = feat_idx[0]
if feat_cache[idx] is None:
feat_cache[idx] = x.clone()
feat_idx[0] += 1
else:
cache_x = x[:, :, -1:, :, :].clone()
x = self.time_conv(
torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2)
)
feat_cache[idx] = cache_x
feat_idx[0] += 1
return x
def init_weight(self, conv):
conv_weight = conv.weight
nn.init.zeros_(conv_weight)
c1, c2, t, h, w = conv_weight.size()
one_matrix = torch.eye(c1, c2)
init_matrix = one_matrix
nn.init.zeros_(conv_weight)
conv_weight.data[:, :, 1, 0, 0] = init_matrix
conv.weight.data.copy_(conv_weight)
nn.init.zeros_(conv.bias.data)
def init_weight2(self, conv):
conv_weight = conv.weight.data
nn.init.zeros_(conv_weight)
c1, c2, t, h, w = conv_weight.size()
init_matrix = torch.eye(c1 // 2, c2)
conv_weight[: c1 // 2, :, -1, 0, 0] = init_matrix
conv_weight[c1 // 2 :, :, -1, 0, 0] = init_matrix
conv.weight.data.copy_(conv_weight)
nn.init.zeros_(conv.bias.data)
def patchify(x, patch_size):
if patch_size == 1:
return x
if x.dim() == 4:
x = rearrange(x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size, r=patch_size)
elif x.dim() == 5:
x = rearrange(
x, "b c f (h q) (w r) -> b (c r q) f h w", q=patch_size, r=patch_size
)
else:
raise ValueError(f"Invalid input shape: {x.shape}")
return x
def unpatchify(x, patch_size):
if patch_size == 1:
return x
if x.dim() == 4:
x = rearrange(x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size, r=patch_size)
elif x.dim() == 5:
x = rearrange(
x, "b (c r q) f h w -> b c f (h q) (w r)", q=patch_size, r=patch_size
)
return x
class Resample38(Resample):
def __init__(self, dim, mode):
assert mode in (
"none",
"upsample2d",
"upsample3d",
"downsample2d",
"downsample3d",
)
super(Resample, self).__init__()
self.dim = dim
self.mode = mode
# layers
if mode == "upsample2d":
self.resample = nn.Sequential(
Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
nn.Conv2d(dim, dim, 3, padding=1),
)
elif mode == "upsample3d":
self.resample = nn.Sequential(
Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
nn.Conv2d(dim, dim, 3, padding=1),
)
self.time_conv = CausalConv3d(dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
elif mode == "downsample2d":
self.resample = nn.Sequential(
nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2))
)
elif mode == "downsample3d":
self.resample = nn.Sequential(
nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2))
)
self.time_conv = CausalConv3d(
dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0)
)
else:
self.resample = nn.Identity()
class ResidualBlock(nn.Module):
def __init__(self, in_dim, out_dim, dropout=0.0):
super().__init__()
self.in_dim = in_dim
self.out_dim = out_dim
# layers
self.residual = nn.Sequential(
RMS_norm(in_dim, images=False),
nn.SiLU(),
CausalConv3d(in_dim, out_dim, 3, padding=1),
RMS_norm(out_dim, images=False),
nn.SiLU(),
nn.Dropout(dropout),
CausalConv3d(out_dim, out_dim, 3, padding=1),
)
self.shortcut = (
CausalConv3d(in_dim, out_dim, 1) if in_dim != out_dim else nn.Identity()
)
def forward(self, x, feat_cache=None, feat_idx=[0]):
h = self.shortcut(x)
for layer in self.residual:
if check_is_instance(layer, CausalConv3d) and feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat(
[
feat_cache[idx][:, :, -1, :, :]
.unsqueeze(2)
.to(cache_x.device),
cache_x,
],
dim=2,
)
x = layer(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = layer(x)
return x + h
class AttentionBlock(nn.Module):
"""
Causal self-attention with a single head.
"""
def __init__(self, dim):
super().__init__()
self.dim = dim
# layers
self.norm = RMS_norm(dim)
self.to_qkv = nn.Conv2d(dim, dim * 3, 1)
self.proj = nn.Conv2d(dim, dim, 1)
# zero out the last layer params
nn.init.zeros_(self.proj.weight)
def forward(self, x):
identity = x
b, c, t, h, w = x.size()
x = rearrange(x, "b c t h w -> (b t) c h w")
x = self.norm(x)
# compute query, key, value
q, k, v = (
self.to_qkv(x)
.reshape(b * t, 1, c * 3, -1)
.permute(0, 1, 3, 2)
.contiguous()
.chunk(3, dim=-1)
)
# apply attention
x = F.scaled_dot_product_attention(
q,
k,
v,
# attn_mask=block_causal_mask(q, block_size=h * w)
)
x = x.squeeze(1).permute(0, 2, 1).reshape(b * t, c, h, w)
# output
x = self.proj(x)
x = rearrange(x, "(b t) c h w-> b c t h w", t=t)
return x + identity
class AvgDown3D(nn.Module):
def __init__(
self,
in_channels,
out_channels,
factor_t,
factor_s=1,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.factor_t = factor_t
self.factor_s = factor_s
self.factor = self.factor_t * self.factor_s * self.factor_s
assert in_channels * self.factor % out_channels == 0
self.group_size = in_channels * self.factor // out_channels
def forward(self, x: torch.Tensor) -> torch.Tensor:
pad_t = (self.factor_t - x.shape[2] % self.factor_t) % self.factor_t
pad = (0, 0, 0, 0, pad_t, 0)
x = F.pad(x, pad)
B, C, T, H, W = x.shape
x = x.view(
B,
C,
T // self.factor_t,
self.factor_t,
H // self.factor_s,
self.factor_s,
W // self.factor_s,
self.factor_s,
)
x = x.permute(0, 1, 3, 5, 7, 2, 4, 6).contiguous()
x = x.view(
B,
C * self.factor,
T // self.factor_t,
H // self.factor_s,
W // self.factor_s,
)
x = x.view(
B,
self.out_channels,
self.group_size,
T // self.factor_t,
H // self.factor_s,
W // self.factor_s,
)
x = x.mean(dim=2)
return x
class DupUp3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
factor_t,
factor_s=1,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.factor_t = factor_t
self.factor_s = factor_s
self.factor = self.factor_t * self.factor_s * self.factor_s
assert out_channels * self.factor % in_channels == 0
self.repeats = out_channels * self.factor // in_channels
def forward(self, x: torch.Tensor, first_chunk=False) -> torch.Tensor:
x = x.repeat_interleave(self.repeats, dim=1)
x = x.view(
x.size(0),
self.out_channels,
self.factor_t,
self.factor_s,
self.factor_s,
x.size(2),
x.size(3),
x.size(4),
)
x = x.permute(0, 1, 5, 2, 6, 3, 7, 4).contiguous()
x = x.view(
x.size(0),
self.out_channels,
x.size(2) * self.factor_t,
x.size(4) * self.factor_s,
x.size(6) * self.factor_s,
)
if first_chunk:
x = x[:, :, self.factor_t - 1 :, :, :]
return x
class Down_ResidualBlock(nn.Module):
def __init__(
self, in_dim, out_dim, dropout, mult, temperal_downsample=False, down_flag=False
):
super().__init__()
# Shortcut path with downsample
self.avg_shortcut = AvgDown3D(
in_dim,
out_dim,
factor_t=2 if temperal_downsample else 1,
factor_s=2 if down_flag else 1,
)
# Main path with residual blocks and downsample
downsamples = []
for _ in range(mult):
downsamples.append(ResidualBlock(in_dim, out_dim, dropout))
in_dim = out_dim
# Add the final downsample block
if down_flag:
mode = "downsample3d" if temperal_downsample else "downsample2d"
downsamples.append(Resample38(out_dim, mode=mode))
self.downsamples = nn.Sequential(*downsamples)
def forward(self, x, feat_cache=None, feat_idx=[0]):
x_copy = x.clone()
for module in self.downsamples:
x = module(x, feat_cache, feat_idx)
return x + self.avg_shortcut(x_copy)
class Up_ResidualBlock(nn.Module):
def __init__(
self, in_dim, out_dim, dropout, mult, temperal_upsample=False, up_flag=False
):
super().__init__()
# Shortcut path with upsample
if up_flag:
self.avg_shortcut = DupUp3D(
in_dim,
out_dim,
factor_t=2 if temperal_upsample else 1,
factor_s=2 if up_flag else 1,
)
else:
self.avg_shortcut = None
# Main path with residual blocks and upsample
upsamples = []
for _ in range(mult):
upsamples.append(ResidualBlock(in_dim, out_dim, dropout))
in_dim = out_dim
# Add the final upsample block
if up_flag:
mode = "upsample3d" if temperal_upsample else "upsample2d"
upsamples.append(Resample38(out_dim, mode=mode))
self.upsamples = nn.Sequential(*upsamples)
def forward(self, x, feat_cache=None, feat_idx=[0], first_chunk=False):
x_main = x.clone()
for module in self.upsamples:
x_main = module(x_main, feat_cache, feat_idx)
if self.avg_shortcut is not None:
x_shortcut = self.avg_shortcut(x, first_chunk)
return x_main + x_shortcut
else:
return x_main
class Encoder3d(nn.Module):
def __init__(
self,
dim=128,
z_dim=4,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_downsample=[True, True, False],
dropout=0.0,
):
super().__init__()
self.dim = dim
self.z_dim = z_dim
self.dim_mult = dim_mult
self.num_res_blocks = num_res_blocks
self.attn_scales = attn_scales
self.temperal_downsample = temperal_downsample
# dimensions
dims = [dim * u for u in [1] + dim_mult]
scale = 1.0
# init block
self.conv1 = CausalConv3d(3, dims[0], 3, padding=1)
# downsample blocks
downsamples = []
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
# residual (+attention) blocks
for _ in range(num_res_blocks):
downsamples.append(ResidualBlock(in_dim, out_dim, dropout))
if scale in attn_scales:
downsamples.append(AttentionBlock(out_dim))
in_dim = out_dim
# downsample block
if i != len(dim_mult) - 1:
mode = "downsample3d" if temperal_downsample[i] else "downsample2d"
downsamples.append(Resample(out_dim, mode=mode))
scale /= 2.0
self.downsamples = nn.Sequential(*downsamples)
# middle blocks
self.middle = nn.Sequential(
ResidualBlock(out_dim, out_dim, dropout),
AttentionBlock(out_dim),
ResidualBlock(out_dim, out_dim, dropout),
)
# output blocks
self.head = nn.Sequential(
RMS_norm(out_dim, images=False),
nn.SiLU(),
CausalConv3d(out_dim, z_dim, 3, padding=1),
)
def forward(self, x, feat_cache=None, feat_idx=[0]):
if feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat(
[
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
cache_x,
],
dim=2,
)
x = self.conv1(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = self.conv1(x)
## downsamples
for layer in self.downsamples:
if feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## middle
for layer in self.middle:
if check_is_instance(layer, ResidualBlock) and feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## head
for layer in self.head:
if check_is_instance(layer, CausalConv3d) and feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat(
[
feat_cache[idx][:, :, -1, :, :]
.unsqueeze(2)
.to(cache_x.device),
cache_x,
],
dim=2,
)
x = layer(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = layer(x)
return x
class Encoder3d_38(nn.Module):
def __init__(
self,
dim=128,
z_dim=4,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_downsample=[False, True, True],
dropout=0.0,
):
super().__init__()
self.dim = dim
self.z_dim = z_dim
self.dim_mult = dim_mult
self.num_res_blocks = num_res_blocks
self.attn_scales = attn_scales
self.temperal_downsample = temperal_downsample
# dimensions
dims = [dim * u for u in [1] + dim_mult]
scale = 1.0
# init block
self.conv1 = CausalConv3d(12, dims[0], 3, padding=1)
# downsample blocks
downsamples = []
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
t_down_flag = (
temperal_downsample[i] if i < len(temperal_downsample) else False
)
downsamples.append(
Down_ResidualBlock(
in_dim=in_dim,
out_dim=out_dim,
dropout=dropout,
mult=num_res_blocks,
temperal_downsample=t_down_flag,
down_flag=i != len(dim_mult) - 1,
)
)
scale /= 2.0
self.downsamples = nn.Sequential(*downsamples)
# middle blocks
self.middle = nn.Sequential(
ResidualBlock(out_dim, out_dim, dropout),
AttentionBlock(out_dim),
ResidualBlock(out_dim, out_dim, dropout),
)
# # output blocks
self.head = nn.Sequential(
RMS_norm(out_dim, images=False),
nn.SiLU(),
CausalConv3d(out_dim, z_dim, 3, padding=1),
)
def forward(self, x, feat_cache=None, feat_idx=[0]):
if feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
cache_x = torch.cat(
[
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
cache_x,
],
dim=2,
)
x = self.conv1(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = self.conv1(x)
## downsamples
for layer in self.downsamples:
if feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## middle
for layer in self.middle:
if isinstance(layer, ResidualBlock) and feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## head
for layer in self.head:
if isinstance(layer, CausalConv3d) and feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
cache_x = torch.cat(
[
feat_cache[idx][:, :, -1, :, :]
.unsqueeze(2)
.to(cache_x.device),
cache_x,
],
dim=2,
)
x = layer(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = layer(x)
return x
class Decoder3d(nn.Module):
def __init__(
self,
dim=128,
z_dim=4,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_upsample=[False, True, True],
dropout=0.0,
):
super().__init__()
self.dim = dim
self.z_dim = z_dim
self.dim_mult = dim_mult
self.num_res_blocks = num_res_blocks
self.attn_scales = attn_scales
self.temperal_upsample = temperal_upsample
# dimensions
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
scale = 1.0 / 2 ** (len(dim_mult) - 2)
# init block
self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)
# middle blocks
self.middle = nn.Sequential(
ResidualBlock(dims[0], dims[0], dropout),
AttentionBlock(dims[0]),
ResidualBlock(dims[0], dims[0], dropout),
)
# upsample blocks
upsamples = []
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
# residual (+attention) blocks
if i == 1 or i == 2 or i == 3:
in_dim = in_dim // 2
for _ in range(num_res_blocks + 1):
upsamples.append(ResidualBlock(in_dim, out_dim, dropout))
if scale in attn_scales:
upsamples.append(AttentionBlock(out_dim))
in_dim = out_dim
# upsample block
if i != len(dim_mult) - 1:
mode = "upsample3d" if temperal_upsample[i] else "upsample2d"
upsamples.append(Resample(out_dim, mode=mode))
scale *= 2.0
self.upsamples = nn.Sequential(*upsamples)
# output blocks
self.head = nn.Sequential(
RMS_norm(out_dim, images=False),
nn.SiLU(),
CausalConv3d(out_dim, 3, 3, padding=1),
)
def forward(self, x, feat_cache=None, feat_idx=[0]):
## conv1
if feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat(
[
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
cache_x,
],
dim=2,
)
x = self.conv1(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = self.conv1(x)
## middle
for layer in self.middle:
if check_is_instance(layer, ResidualBlock) and feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## upsamples
for layer in self.upsamples:
if feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## head
for layer in self.head:
if check_is_instance(layer, CausalConv3d) and feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat(
[
feat_cache[idx][:, :, -1, :, :]
.unsqueeze(2)
.to(cache_x.device),
cache_x,
],
dim=2,
)
x = layer(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = layer(x)
return x
class Decoder3d_38(nn.Module):
def __init__(
self,
dim=128,
z_dim=4,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_upsample=[False, True, True],
dropout=0.0,
):
super().__init__()
self.dim = dim
self.z_dim = z_dim
self.dim_mult = dim_mult
self.num_res_blocks = num_res_blocks
self.attn_scales = attn_scales
self.temperal_upsample = temperal_upsample
# dimensions
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
scale = 1.0 / 2 ** (len(dim_mult) - 2)
# init block
self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)
# middle blocks
self.middle = nn.Sequential(
ResidualBlock(dims[0], dims[0], dropout),
AttentionBlock(dims[0]),
ResidualBlock(dims[0], dims[0], dropout),
)
# upsample blocks
upsamples = []
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
t_up_flag = temperal_upsample[i] if i < len(temperal_upsample) else False
upsamples.append(
Up_ResidualBlock(
in_dim=in_dim,
out_dim=out_dim,
dropout=dropout,
mult=num_res_blocks + 1,
temperal_upsample=t_up_flag,
up_flag=i != len(dim_mult) - 1,
)
)
self.upsamples = nn.Sequential(*upsamples)
# output blocks
self.head = nn.Sequential(
RMS_norm(out_dim, images=False),
nn.SiLU(),
CausalConv3d(out_dim, 12, 3, padding=1),
)
def forward(self, x, feat_cache=None, feat_idx=[0], first_chunk=False):
if feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
cache_x = torch.cat(
[
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
cache_x,
],
dim=2,
)
x = self.conv1(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = self.conv1(x)
for layer in self.middle:
if check_is_instance(layer, ResidualBlock) and feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## upsamples
for layer in self.upsamples:
if feat_cache is not None:
x = layer(x, feat_cache, feat_idx, first_chunk)
else:
x = layer(x)
## head
for layer in self.head:
if check_is_instance(layer, CausalConv3d) and feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
cache_x = torch.cat(
[
feat_cache[idx][:, :, -1, :, :]
.unsqueeze(2)
.to(cache_x.device),
cache_x,
],
dim=2,
)
x = layer(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = layer(x)
return x
def count_conv3d(model):
count = 0
for m in model.modules():
if isinstance(m, CausalConv3d):
count += 1
return count
class VideoVAE_(nn.Module):
def __init__(
self,
dim=96,
z_dim=16,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_downsample=[False, True, True],
dropout=0.0,
):
super().__init__()
self.dim = dim
self.z_dim = z_dim
self.dim_mult = dim_mult
self.num_res_blocks = num_res_blocks
self.attn_scales = attn_scales
self.temperal_downsample = temperal_downsample
self.temperal_upsample = temperal_downsample[::-1]
# modules
self.encoder = Encoder3d(
dim,
z_dim * 2,
dim_mult,
num_res_blocks,
attn_scales,
self.temperal_downsample,
dropout,
)
self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
self.conv2 = CausalConv3d(z_dim, z_dim, 1)
self.decoder = Decoder3d(
dim,
z_dim,
dim_mult,
num_res_blocks,
attn_scales,
self.temperal_upsample,
dropout,
)
def forward(self, x):
mu, log_var = self.encode(x)
z = self.reparameterize(mu, log_var)
x_recon = self.decode(z)
return x_recon, mu, log_var
def encode(self, x, scale):
self.clear_cache()
## cache
t = x.shape[2]
iter_ = 1 + (t - 1) // 4
for i in range(iter_):
self._enc_conv_idx = [0]
if i == 0:
out = self.encoder(
x[:, :, :1, :, :],
feat_cache=self._enc_feat_map,
feat_idx=self._enc_conv_idx,
)
else:
out_ = self.encoder(
x[:, :, 1 + 4 * (i - 1) : 1 + 4 * i, :, :],
feat_cache=self._enc_feat_map,
feat_idx=self._enc_conv_idx,
)
out = torch.cat([out, out_], 2)
mu, log_var = self.conv1(out).chunk(2, dim=1)
if isinstance(scale[0], torch.Tensor):
scale = [s.to(dtype=mu.dtype, device=mu.device) for s in scale]
mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(
1, self.z_dim, 1, 1, 1
)
else:
scale = scale.to(dtype=mu.dtype, device=mu.device)
mu = (mu - scale[0]) * scale[1]
return mu
def decode(self, z, scale):
self.clear_cache()
# z: [b,c,t,h,w]
if isinstance(scale[0], torch.Tensor):
scale = [s.to(dtype=z.dtype, device=z.device) for s in scale]
z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(
1, self.z_dim, 1, 1, 1
)
else:
scale = scale.to(dtype=z.dtype, device=z.device)
z = z / scale[1] + scale[0]
iter_ = z.shape[2]
x = self.conv2(z)
for i in range(iter_):
self._conv_idx = [0]
if i == 0:
out = self.decoder(
x[:, :, i : i + 1, :, :],
feat_cache=self._feat_map,
feat_idx=self._conv_idx,
)
else:
out_ = self.decoder(
x[:, :, i : i + 1, :, :],
feat_cache=self._feat_map,
feat_idx=self._conv_idx,
)
out = torch.cat([out, out_], 2) # may add tensor offload
return out
def reparameterize(self, mu, log_var):
std = torch.exp(0.5 * log_var)
eps = torch.randn_like(std)
return eps * std + mu
def sample(self, imgs, deterministic=False):
mu, log_var = self.encode(imgs)
if deterministic:
return mu
std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
return mu + std * torch.randn_like(std)
def clear_cache(self):
self._conv_num = count_conv3d(self.decoder)
self._conv_idx = [0]
self._feat_map = [None] * self._conv_num
# cache encode
self._enc_conv_num = count_conv3d(self.encoder)
self._enc_conv_idx = [0]
self._enc_feat_map = [None] * self._enc_conv_num
class WanVideoVAE(nn.Module):
def __init__(self, z_dim=16):
super().__init__()
mean = [
-0.7571,
-0.7089,
-0.9113,
0.1075,
-0.1745,
0.9653,
-0.1517,
1.5508,
0.4134,
-0.0715,
0.5517,
-0.3632,
-0.1922,
-0.9497,
0.2503,
-0.2921,
]
std = [
2.8184,
1.4541,
2.3275,
2.6558,
1.2196,
1.7708,
2.6052,
2.0743,
3.2687,
2.1526,
2.8652,
1.5579,
1.6382,
1.1253,
2.8251,
1.9160,
]
self.mean = torch.tensor(mean)
self.std = torch.tensor(std)
self.scale = [self.mean, 1.0 / self.std]
# init model
self.model = VideoVAE_(z_dim=z_dim).eval().requires_grad_(False)
self.upsampling_factor = 8
self.z_dim = z_dim
def build_1d_mask(self, length, left_bound, right_bound, border_width):
x = torch.ones((length,))
if not left_bound:
x[:border_width] = (torch.arange(border_width) + 1) / border_width
if not right_bound:
x[-border_width:] = torch.flip(
(torch.arange(border_width) + 1) / border_width, dims=(0,)
)
return x
def build_mask(self, data, is_bound, border_width):
_, _, _, H, W = data.shape
h = self.build_1d_mask(H, is_bound[0], is_bound[1], border_width[0])
w = self.build_1d_mask(W, is_bound[2], is_bound[3], border_width[1])
h = repeat(h, "H -> H W", H=H, W=W)
w = repeat(w, "W -> H W", H=H, W=W)
mask = torch.stack([h, w]).min(dim=0).values
mask = rearrange(mask, "H W -> 1 1 1 H W")
return mask
def tiled_decode(self, hidden_states, device, tile_size, tile_stride):
_, _, T, H, W = hidden_states.shape
size_h, size_w = tile_size
stride_h, stride_w = tile_stride
# Split tasks
tasks = []
for h in range(0, H, stride_h):
if h - stride_h >= 0 and h - stride_h + size_h >= H:
continue
for w in range(0, W, stride_w):
if w - stride_w >= 0 and w - stride_w + size_w >= W:
continue
h_, w_ = h + size_h, w + size_w
tasks.append((h, h_, w, w_))
data_device = "cpu"
computation_device = device
out_T = T * 4 - 3
weight = torch.zeros(
(1, 1, out_T, H * self.upsampling_factor, W * self.upsampling_factor),
dtype=hidden_states.dtype,
device=data_device,
)
values = torch.zeros(
(1, 3, out_T, H * self.upsampling_factor, W * self.upsampling_factor),
dtype=hidden_states.dtype,
device=data_device,
)
for h, h_, w, w_ in tqdm(tasks, desc="VAE decoding"):
hidden_states_batch = hidden_states[:, :, :, h:h_, w:w_].to(
computation_device
)
hidden_states_batch = self.model.decode(hidden_states_batch, self.scale).to(
data_device
)
mask = self.build_mask(
hidden_states_batch,
is_bound=(h == 0, h_ >= H, w == 0, w_ >= W),
border_width=(
(size_h - stride_h) * self.upsampling_factor,
(size_w - stride_w) * self.upsampling_factor,
),
).to(dtype=hidden_states.dtype, device=data_device)
target_h = h * self.upsampling_factor
target_w = w * self.upsampling_factor
values[
:,
:,
:,
target_h : target_h + hidden_states_batch.shape[3],
target_w : target_w + hidden_states_batch.shape[4],
] += hidden_states_batch * mask
weight[
:,
:,
:,
target_h : target_h + hidden_states_batch.shape[3],
target_w : target_w + hidden_states_batch.shape[4],
] += mask
values = values / weight
values = values.clamp_(-1, 1)
return values
def tiled_encode(self, video, device, tile_size, tile_stride):
_, _, T, H, W = video.shape
size_h, size_w = tile_size
stride_h, stride_w = tile_stride
# Split tasks
tasks = []
for h in range(0, H, stride_h):
if h - stride_h >= 0 and h - stride_h + size_h >= H:
continue
for w in range(0, W, stride_w):
if w - stride_w >= 0 and w - stride_w + size_w >= W:
continue
h_, w_ = h + size_h, w + size_w
tasks.append((h, h_, w, w_))
data_device = "cpu"
computation_device = device
out_T = (T + 3) // 4
weight = torch.zeros(
(1, 1, out_T, H // self.upsampling_factor, W // self.upsampling_factor),
dtype=video.dtype,
device=data_device,
)
values = torch.zeros(
(
1,
self.z_dim,
out_T,
H // self.upsampling_factor,
W // self.upsampling_factor,
),
dtype=video.dtype,
device=data_device,
)
for h, h_, w, w_ in tqdm(tasks, desc="VAE encoding"):
hidden_states_batch = video[:, :, :, h:h_, w:w_].to(computation_device)
hidden_states_batch = self.model.encode(hidden_states_batch, self.scale).to(
data_device
)
mask = self.build_mask(
hidden_states_batch,
is_bound=(h == 0, h_ >= H, w == 0, w_ >= W),
border_width=(
(size_h - stride_h) // self.upsampling_factor,
(size_w - stride_w) // self.upsampling_factor,
),
).to(dtype=video.dtype, device=data_device)
target_h = h // self.upsampling_factor
target_w = w // self.upsampling_factor
values[
:,
:,
:,
target_h : target_h + hidden_states_batch.shape[3],
target_w : target_w + hidden_states_batch.shape[4],
] += hidden_states_batch * mask
weight[
:,
:,
:,
target_h : target_h + hidden_states_batch.shape[3],
target_w : target_w + hidden_states_batch.shape[4],
] += mask
values = values / weight
return values
def single_encode(self, video, device):
video = video.to(device)
x = self.model.encode(video, self.scale)
return x
def single_decode(self, hidden_state, device):
hidden_state = hidden_state.to(device)
video = self.model.decode(hidden_state, self.scale)
return video.clamp_(-1, 1)
def encode(
self, videos, device, tiled=False, tile_size=(34, 34), tile_stride=(18, 16)
):
videos = [video.to("cpu") for video in videos]
hidden_states = []
for video in videos:
video = video.unsqueeze(0)
if tiled:
tile_size = (
tile_size[0] * self.upsampling_factor,
tile_size[1] * self.upsampling_factor,
)
tile_stride = (
tile_stride[0] * self.upsampling_factor,
tile_stride[1] * self.upsampling_factor,
)
hidden_state = self.tiled_encode(video, device, tile_size, tile_stride)
else:
hidden_state = self.single_encode(video, device)
hidden_state = hidden_state.squeeze(0)
hidden_states.append(hidden_state)
hidden_states = torch.stack(hidden_states)
return hidden_states
def decode(
self,
hidden_states,
device,
tiled=False,
tile_size=(34, 34),
tile_stride=(18, 16),
):
if tiled:
video = self.tiled_decode(hidden_states, device, tile_size, tile_stride)
else:
video = self.single_decode(hidden_states, device)
return video
@staticmethod
def state_dict_converter():
return WanVideoVAEStateDictConverter()
class WanVideoVAEStateDictConverter:
def __init__(self):
pass
def from_civitai(self, state_dict):
state_dict_ = {}
if "model_state" in state_dict:
state_dict = state_dict["model_state"]
for name in state_dict:
state_dict_["model." + name] = state_dict[name]
return state_dict_
class VideoVAE38_(VideoVAE_):
def __init__(
self,
dim=160,
z_dim=48,
dec_dim=256,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_downsample=[False, True, True],
dropout=0.0,
):
super(VideoVAE_, self).__init__()
self.dim = dim
self.z_dim = z_dim
self.dim_mult = dim_mult
self.num_res_blocks = num_res_blocks
self.attn_scales = attn_scales
self.temperal_downsample = temperal_downsample
self.temperal_upsample = temperal_downsample[::-1]
# modules
self.encoder = Encoder3d_38(
dim,
z_dim * 2,
dim_mult,
num_res_blocks,
attn_scales,
self.temperal_downsample,
dropout,
)
self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
self.conv2 = CausalConv3d(z_dim, z_dim, 1)
self.decoder = Decoder3d_38(
dec_dim,
z_dim,
dim_mult,
num_res_blocks,
attn_scales,
self.temperal_upsample,
dropout,
)
def encode(self, x, scale):
self.clear_cache()
x = patchify(x, patch_size=2)
t = x.shape[2]
iter_ = 1 + (t - 1) // 4
for i in range(iter_):
self._enc_conv_idx = [0]
if i == 0:
out = self.encoder(
x[:, :, :1, :, :],
feat_cache=self._enc_feat_map,
feat_idx=self._enc_conv_idx,
)
else:
out_ = self.encoder(
x[:, :, 1 + 4 * (i - 1) : 1 + 4 * i, :, :],
feat_cache=self._enc_feat_map,
feat_idx=self._enc_conv_idx,
)
out = torch.cat([out, out_], 2)
mu, log_var = self.conv1(out).chunk(2, dim=1)
if isinstance(scale[0], torch.Tensor):
scale = [s.to(dtype=mu.dtype, device=mu.device) for s in scale]
mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(
1, self.z_dim, 1, 1, 1
)
else:
scale = scale.to(dtype=mu.dtype, device=mu.device)
mu = (mu - scale[0]) * scale[1]
self.clear_cache()
return mu
def decode(self, z, scale):
self.clear_cache()
if isinstance(scale[0], torch.Tensor):
scale = [s.to(dtype=z.dtype, device=z.device) for s in scale]
z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(
1, self.z_dim, 1, 1, 1
)
else:
scale = scale.to(dtype=z.dtype, device=z.device)
z = z / scale[1] + scale[0]
iter_ = z.shape[2]
x = self.conv2(z)
for i in range(iter_):
self._conv_idx = [0]
if i == 0:
out = self.decoder(
x[:, :, i : i + 1, :, :],
feat_cache=self._feat_map,
feat_idx=self._conv_idx,
first_chunk=True,
)
else:
out_ = self.decoder(
x[:, :, i : i + 1, :, :],
feat_cache=self._feat_map,
feat_idx=self._conv_idx,
)
out = torch.cat([out, out_], 2)
out = unpatchify(out, patch_size=2)
self.clear_cache()
return out
class WanVideoVAE38(WanVideoVAE):
def __init__(self, z_dim=48, dim=160):
super(WanVideoVAE, self).__init__()
mean = [
-0.2289,
-0.0052,
-0.1323,
-0.2339,
-0.2799,
0.0174,
0.1838,
0.1557,
-0.1382,
0.0542,
0.2813,
0.0891,
0.1570,
-0.0098,
0.0375,
-0.1825,
-0.2246,
-0.1207,
-0.0698,
0.5109,
0.2665,
-0.2108,
-0.2158,
0.2502,
-0.2055,
-0.0322,
0.1109,
0.1567,
-0.0729,
0.0899,
-0.2799,
-0.1230,
-0.0313,
-0.1649,
0.0117,
0.0723,
-0.2839,
-0.2083,
-0.0520,
0.3748,
0.0152,
0.1957,
0.1433,
-0.2944,
0.3573,
-0.0548,
-0.1681,
-0.0667,
]
std = [
0.4765,
1.0364,
0.4514,
1.1677,
0.5313,
0.4990,
0.4818,
0.5013,
0.8158,
1.0344,
0.5894,
1.0901,
0.6885,
0.6165,
0.8454,
0.4978,
0.5759,
0.3523,
0.7135,
0.6804,
0.5833,
1.4146,
0.8986,
0.5659,
0.7069,
0.5338,
0.4889,
0.4917,
0.4069,
0.4999,
0.6866,
0.4093,
0.5709,
0.6065,
0.6415,
0.4944,
0.5726,
1.2042,
0.5458,
1.6887,
0.3971,
1.0600,
0.3943,
0.5537,
0.5444,
0.4089,
0.7468,
0.7744,
]
self.mean = torch.tensor(mean)
self.std = torch.tensor(std)
self.scale = [self.mean, 1.0 / self.std]
# init model
self.model = VideoVAE38_(z_dim=z_dim, dim=dim).eval().requires_grad_(False)
self.upsampling_factor = 16
self.z_dim = z_dim