Stand-In / pipelines /wan_video_face_swap.py
fffiloni's picture
Migrated from GitHub
26557da verified
import torch, types
import numpy as np
from PIL import Image
from einops import repeat
from typing import Optional, Union
from einops import rearrange
import numpy as np
from tqdm import tqdm
from typing import Optional
from typing_extensions import Literal
import imageio
import os
from typing import List
import cv2
from utils import BasePipeline, ModelConfig, PipelineUnit, PipelineUnitRunner
from models import ModelManager, load_state_dict
from models.wan_video_dit import WanModel, RMSNorm, sinusoidal_embedding_1d
from models.wan_video_text_encoder import (
WanTextEncoder,
T5RelativeEmbedding,
T5LayerNorm,
)
from models.wan_video_vae import WanVideoVAE, RMS_norm, CausalConv3d, Upsample
from models.wan_video_image_encoder import WanImageEncoder
from models.wan_video_vace import VaceWanModel
from models.wan_video_motion_controller import WanMotionControllerModel
from schedulers.flow_match import FlowMatchScheduler
from prompters import WanPrompter
from vram_management import (
enable_vram_management,
AutoWrappedModule,
AutoWrappedLinear,
WanAutoCastLayerNorm,
)
from lora import GeneralLoRALoader
def load_video_as_list(video_path: str) -> List[Image.Image]:
if not os.path.isfile(video_path):
raise FileNotFoundError(video_path)
reader = imageio.get_reader(video_path)
frames = []
for i, frame_data in enumerate(reader):
pil_image = Image.fromarray(frame_data)
frames.append(pil_image)
reader.close()
return frames
class WanVideoPipeline_FaceSwap(BasePipeline):
def __init__(self, device="cuda", torch_dtype=torch.bfloat16, tokenizer_path=None):
super().__init__(
device=device,
torch_dtype=torch_dtype,
height_division_factor=16,
width_division_factor=16,
time_division_factor=4,
time_division_remainder=1,
)
self.scheduler = FlowMatchScheduler(shift=5, sigma_min=0.0, extra_one_step=True)
self.prompter = WanPrompter(tokenizer_path=tokenizer_path)
self.text_encoder: WanTextEncoder = None
self.image_encoder: WanImageEncoder = None
self.dit: WanModel = None
self.dit2: WanModel = None
self.vae: WanVideoVAE = None
self.motion_controller: WanMotionControllerModel = None
self.vace: VaceWanModel = None
self.in_iteration_models = ("dit", "motion_controller", "vace")
self.in_iteration_models_2 = ("dit2", "motion_controller", "vace")
self.unit_runner = PipelineUnitRunner()
self.units = [
WanVideoUnit_ShapeChecker(),
WanVideoUnit_NoiseInitializer(),
WanVideoUnit_InputVideoEmbedder(),
WanVideoUnit_PromptEmbedder(),
WanVideoUnit_ImageEmbedderVAE(),
WanVideoUnit_ImageEmbedderCLIP(),
WanVideoUnit_ImageEmbedderFused(),
WanVideoUnit_FunControl(),
WanVideoUnit_FunReference(),
WanVideoUnit_FunCameraControl(),
WanVideoUnit_SpeedControl(),
WanVideoUnit_VACE(),
WanVideoUnit_UnifiedSequenceParallel(),
WanVideoUnit_TeaCache(),
WanVideoUnit_CfgMerger(),
]
self.model_fn = model_fn_wan_video
def encode_ip_image(self, ip_image):
self.load_models_to_device(["vae"])
ip_image = (
torch.tensor(np.array(ip_image)).permute(2, 0, 1).float() / 255.0
) # [3, H, W]
ip_image = (
ip_image.unsqueeze(1).unsqueeze(0).to(dtype=self.torch_dtype)
) # [B, 3, 1, H, W]
ip_image = ip_image * 2 - 1
ip_image_latent = self.vae.encode(ip_image, device=self.device, tiled=False)
return ip_image_latent
def load_lora(self, module, path, alpha=1):
loader = GeneralLoRALoader(torch_dtype=self.torch_dtype, device=self.device)
lora = load_state_dict(path, torch_dtype=self.torch_dtype, device=self.device)
loader.load(module, lora, alpha=alpha)
def training_loss(self, **inputs):
max_timestep_boundary = int(
inputs.get("max_timestep_boundary", 1) * self.scheduler.num_train_timesteps
)
min_timestep_boundary = int(
inputs.get("min_timestep_boundary", 0) * self.scheduler.num_train_timesteps
)
timestep_id = torch.randint(min_timestep_boundary, max_timestep_boundary, (1,))
timestep = self.scheduler.timesteps[timestep_id].to(
dtype=self.torch_dtype, device=self.device
)
inputs["latents"] = self.scheduler.add_noise(
inputs["input_latents"], inputs["noise"], timestep
)
training_target = self.scheduler.training_target(
inputs["input_latents"], inputs["noise"], timestep
)
noise_pred = self.model_fn(**inputs, timestep=timestep)
loss = torch.nn.functional.mse_loss(noise_pred.float(), training_target.float())
loss = loss * self.scheduler.training_weight(timestep)
return loss
def enable_vram_management(
self, num_persistent_param_in_dit=None, vram_limit=None, vram_buffer=0.5
):
self.vram_management_enabled = True
if num_persistent_param_in_dit is not None:
vram_limit = None
else:
if vram_limit is None:
vram_limit = self.get_vram()
vram_limit = vram_limit - vram_buffer
if self.text_encoder is not None:
dtype = next(iter(self.text_encoder.parameters())).dtype
enable_vram_management(
self.text_encoder,
module_map={
torch.nn.Linear: AutoWrappedLinear,
torch.nn.Embedding: AutoWrappedModule,
T5RelativeEmbedding: AutoWrappedModule,
T5LayerNorm: AutoWrappedModule,
},
module_config=dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device="cpu",
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
vram_limit=vram_limit,
)
if self.dit is not None:
dtype = next(iter(self.dit.parameters())).dtype
device = "cpu" if vram_limit is not None else self.device
enable_vram_management(
self.dit,
module_map={
torch.nn.Linear: AutoWrappedLinear,
torch.nn.Conv3d: AutoWrappedModule,
torch.nn.LayerNorm: WanAutoCastLayerNorm,
RMSNorm: AutoWrappedModule,
torch.nn.Conv2d: AutoWrappedModule,
},
module_config=dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device=device,
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
max_num_param=num_persistent_param_in_dit,
overflow_module_config=dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device="cpu",
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
vram_limit=vram_limit,
)
if self.dit2 is not None:
dtype = next(iter(self.dit2.parameters())).dtype
device = "cpu" if vram_limit is not None else self.device
enable_vram_management(
self.dit2,
module_map={
torch.nn.Linear: AutoWrappedLinear,
torch.nn.Conv3d: AutoWrappedModule,
torch.nn.LayerNorm: WanAutoCastLayerNorm,
RMSNorm: AutoWrappedModule,
torch.nn.Conv2d: AutoWrappedModule,
},
module_config=dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device=device,
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
max_num_param=num_persistent_param_in_dit,
overflow_module_config=dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device="cpu",
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
vram_limit=vram_limit,
)
if self.vae is not None:
dtype = next(iter(self.vae.parameters())).dtype
enable_vram_management(
self.vae,
module_map={
torch.nn.Linear: AutoWrappedLinear,
torch.nn.Conv2d: AutoWrappedModule,
RMS_norm: AutoWrappedModule,
CausalConv3d: AutoWrappedModule,
Upsample: AutoWrappedModule,
torch.nn.SiLU: AutoWrappedModule,
torch.nn.Dropout: AutoWrappedModule,
},
module_config=dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device=self.device,
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
)
if self.image_encoder is not None:
dtype = next(iter(self.image_encoder.parameters())).dtype
enable_vram_management(
self.image_encoder,
module_map={
torch.nn.Linear: AutoWrappedLinear,
torch.nn.Conv2d: AutoWrappedModule,
torch.nn.LayerNorm: AutoWrappedModule,
},
module_config=dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device="cpu",
computation_dtype=dtype,
computation_device=self.device,
),
)
if self.motion_controller is not None:
dtype = next(iter(self.motion_controller.parameters())).dtype
enable_vram_management(
self.motion_controller,
module_map={
torch.nn.Linear: AutoWrappedLinear,
},
module_config=dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device="cpu",
computation_dtype=dtype,
computation_device=self.device,
),
)
if self.vace is not None:
device = "cpu" if vram_limit is not None else self.device
enable_vram_management(
self.vace,
module_map={
torch.nn.Linear: AutoWrappedLinear,
torch.nn.Conv3d: AutoWrappedModule,
torch.nn.LayerNorm: AutoWrappedModule,
RMSNorm: AutoWrappedModule,
},
module_config=dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device=device,
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
vram_limit=vram_limit,
)
def initialize_usp(self):
import torch.distributed as dist
from xfuser.core.distributed import (
initialize_model_parallel,
init_distributed_environment,
)
dist.init_process_group(backend="nccl", init_method="env://")
init_distributed_environment(
rank=dist.get_rank(), world_size=dist.get_world_size()
)
initialize_model_parallel(
sequence_parallel_degree=dist.get_world_size(),
ring_degree=1,
ulysses_degree=dist.get_world_size(),
)
torch.cuda.set_device(dist.get_rank())
def enable_usp(self):
from xfuser.core.distributed import get_sequence_parallel_world_size
from distributed.xdit_context_parallel import (
usp_attn_forward,
usp_dit_forward,
)
for block in self.dit.blocks:
block.self_attn.forward = types.MethodType(
usp_attn_forward, block.self_attn
)
self.dit.forward = types.MethodType(usp_dit_forward, self.dit)
if self.dit2 is not None:
for block in self.dit2.blocks:
block.self_attn.forward = types.MethodType(
usp_attn_forward, block.self_attn
)
self.dit2.forward = types.MethodType(usp_dit_forward, self.dit2)
self.sp_size = get_sequence_parallel_world_size()
self.use_unified_sequence_parallel = True
@staticmethod
def from_pretrained(
torch_dtype: torch.dtype = torch.bfloat16,
device: Union[str, torch.device] = "cuda",
model_configs: list[ModelConfig] = [],
tokenizer_config: ModelConfig = ModelConfig(
model_id="Wan-AI/Wan2.1-T2V-1.3B", origin_file_pattern="google/*"
),
redirect_common_files: bool = True,
use_usp=False,
):
# Redirect model path
if redirect_common_files:
redirect_dict = {
"models_t5_umt5-xxl-enc-bf16.pth": "Wan-AI/Wan2.1-T2V-1.3B",
"Wan2.1_VAE.pth": "Wan-AI/Wan2.1-T2V-1.3B",
"models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth": "Wan-AI/Wan2.1-I2V-14B-480P",
}
for model_config in model_configs:
if (
model_config.origin_file_pattern is None
or model_config.model_id is None
):
continue
if (
model_config.origin_file_pattern in redirect_dict
and model_config.model_id
!= redirect_dict[model_config.origin_file_pattern]
):
print(
f"To avoid repeatedly downloading model files, ({model_config.model_id}, {model_config.origin_file_pattern}) is redirected to ({redirect_dict[model_config.origin_file_pattern]}, {model_config.origin_file_pattern}). You can use `redirect_common_files=False` to disable file redirection."
)
model_config.model_id = redirect_dict[
model_config.origin_file_pattern
]
# Initialize pipeline
pipe = WanVideoPipeline_FaceSwap(device=device, torch_dtype=torch_dtype)
if use_usp:
pipe.initialize_usp()
# Download and load models
model_manager = ModelManager()
for model_config in model_configs:
model_config.download_if_necessary(use_usp=use_usp)
model_manager.load_model(
model_config.path,
device=model_config.offload_device or device,
torch_dtype=model_config.offload_dtype or torch_dtype,
)
# Load models
pipe.text_encoder = model_manager.fetch_model("wan_video_text_encoder")
dit = model_manager.fetch_model("wan_video_dit", index=2)
if isinstance(dit, list):
pipe.dit, pipe.dit2 = dit
else:
pipe.dit = dit
pipe.vae = model_manager.fetch_model("wan_video_vae")
pipe.image_encoder = model_manager.fetch_model("wan_video_image_encoder")
pipe.motion_controller = model_manager.fetch_model(
"wan_video_motion_controller"
)
pipe.vace = model_manager.fetch_model("wan_video_vace")
# Size division factor
if pipe.vae is not None:
pipe.height_division_factor = pipe.vae.upsampling_factor * 2
pipe.width_division_factor = pipe.vae.upsampling_factor * 2
# Initialize tokenizer
tokenizer_config.download_if_necessary(use_usp=use_usp)
pipe.prompter.fetch_models(pipe.text_encoder)
pipe.prompter.fetch_tokenizer(tokenizer_config.path)
# Unified Sequence Parallel
if use_usp:
pipe.enable_usp()
return pipe
@torch.no_grad()
def __call__(
self,
# Prompt
prompt: str,
negative_prompt: Optional[str] = "",
# Image-to-video
input_image: Optional[Image.Image] = None,
# First-last-frame-to-video
end_image: Optional[Image.Image] = None,
# Video-to-video
input_video: Optional[list[Image.Image]] = None,
denoising_strength: Optional[float] = 1,
# ControlNet
control_video: Optional[list[Image.Image]] = None,
reference_image: Optional[Image.Image] = None,
# Camera control
camera_control_direction: Optional[
Literal[
"Left",
"Right",
"Up",
"Down",
"LeftUp",
"LeftDown",
"RightUp",
"RightDown",
]
] = None,
camera_control_speed: Optional[float] = 1 / 54,
camera_control_origin: Optional[tuple] = (
0,
0.532139961,
0.946026558,
0.5,
0.5,
0,
0,
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
),
# VACE
vace_video: Optional[list[Image.Image]] = None,
vace_video_mask: Optional[Image.Image] = None,
vace_reference_image: Optional[Image.Image] = None,
vace_scale: Optional[float] = 1.0,
# Randomness
seed: Optional[int] = None,
rand_device: Optional[str] = "cpu",
# Shape
height: Optional[int] = 480,
width: Optional[int] = 832,
num_frames=81,
# Classifier-free guidance
cfg_scale: Optional[float] = 5.0,
cfg_merge: Optional[bool] = False,
# Boundary
switch_DiT_boundary: Optional[float] = 0.875,
# Scheduler
num_inference_steps: Optional[int] = 50,
sigma_shift: Optional[float] = 5.0,
# Speed control
motion_bucket_id: Optional[int] = None,
# VAE tiling
tiled: Optional[bool] = True,
tile_size: Optional[tuple[int, int]] = (30, 52),
tile_stride: Optional[tuple[int, int]] = (15, 26),
# Sliding window
sliding_window_size: Optional[int] = None,
sliding_window_stride: Optional[int] = None,
# Teacache
tea_cache_l1_thresh: Optional[float] = None,
tea_cache_model_id: Optional[str] = "",
# progress_bar
progress_bar_cmd=tqdm,
# Stand-In
face_mask=None,
ip_image=None,
force_background_consistency=False
):
if ip_image is not None:
ip_image = self.encode_ip_image(ip_image)
# Scheduler
self.scheduler.set_timesteps(
num_inference_steps,
denoising_strength=denoising_strength,
shift=sigma_shift,
)
# Inputs
inputs_posi = {
"prompt": prompt,
"tea_cache_l1_thresh": tea_cache_l1_thresh,
"tea_cache_model_id": tea_cache_model_id,
"num_inference_steps": num_inference_steps,
}
inputs_nega = {
"negative_prompt": negative_prompt,
"tea_cache_l1_thresh": tea_cache_l1_thresh,
"tea_cache_model_id": tea_cache_model_id,
"num_inference_steps": num_inference_steps,
}
inputs_shared = {
"input_image": input_image,
"end_image": end_image,
"input_video": input_video,
"denoising_strength": denoising_strength,
"control_video": control_video,
"reference_image": reference_image,
"camera_control_direction": camera_control_direction,
"camera_control_speed": camera_control_speed,
"camera_control_origin": camera_control_origin,
"vace_video": vace_video,
"vace_video_mask": vace_video_mask,
"vace_reference_image": vace_reference_image,
"vace_scale": vace_scale,
"seed": seed,
"rand_device": rand_device,
"height": height,
"width": width,
"num_frames": num_frames,
"cfg_scale": cfg_scale,
"cfg_merge": cfg_merge,
"sigma_shift": sigma_shift,
"motion_bucket_id": motion_bucket_id,
"tiled": tiled,
"tile_size": tile_size,
"tile_stride": tile_stride,
"sliding_window_size": sliding_window_size,
"sliding_window_stride": sliding_window_stride,
"ip_image": ip_image,
}
for unit in self.units:
inputs_shared, inputs_posi, inputs_nega = self.unit_runner(
unit, self, inputs_shared, inputs_posi, inputs_nega
)
if face_mask is not None:
mask_processed = self.preprocess_video(face_mask)
mask_processed = mask_processed[:, 0:1, ...]
latent_mask = torch.nn.functional.interpolate(
mask_processed,
size=inputs_shared["latents"].shape[2:],
mode="nearest-exact",
)
# Denoise
self.load_models_to_device(self.in_iteration_models)
models = {name: getattr(self, name) for name in self.in_iteration_models}
for progress_id, timestep in enumerate(
progress_bar_cmd(self.scheduler.timesteps)
):
# Switch DiT if necessary
if (
timestep.item()
< switch_DiT_boundary * self.scheduler.num_train_timesteps
and self.dit2 is not None
and not models["dit"] is self.dit2
):
self.load_models_to_device(self.in_iteration_models_2)
models["dit"] = self.dit2
# Timestep
timestep = timestep.unsqueeze(0).to(
dtype=self.torch_dtype, device=self.device
)
# Inference
noise_pred_posi = self.model_fn(
**models, **inputs_shared, **inputs_posi, timestep=timestep
)
inputs_shared["ip_image"] = None
if cfg_scale != 1.0:
if cfg_merge:
noise_pred_posi, noise_pred_nega = noise_pred_posi.chunk(2, dim=0)
else:
noise_pred_nega = self.model_fn(
**models, **inputs_shared, **inputs_nega, timestep=timestep
)
noise_pred = noise_pred_nega + cfg_scale * (
noise_pred_posi - noise_pred_nega
)
else:
noise_pred = noise_pred_posi
# Scheduler
inputs_shared["latents"] = self.scheduler.step(
noise_pred,
self.scheduler.timesteps[progress_id],
inputs_shared["latents"],
)
if force_background_consistency:
if (
inputs_shared["input_latents"] is not None
and latent_mask is not None
):
if progress_id == len(self.scheduler.timesteps) - 1:
noised_original_latents = inputs_shared["input_latents"]
else:
next_timestep = self.scheduler.timesteps[progress_id + 1]
noised_original_latents = self.scheduler.add_noise(
inputs_shared["input_latents"],
inputs_shared["noise"],
timestep=next_timestep,
)
hard_mask = (latent_mask > 0.5).to(
dtype=inputs_shared["latents"].dtype
)
inputs_shared["latents"] = (
1 - hard_mask
) * noised_original_latents + hard_mask * inputs_shared["latents"]
if "first_frame_latents" in inputs_shared:
inputs_shared["latents"][:, :, 0:1] = inputs_shared[
"first_frame_latents"
]
if vace_reference_image is not None:
inputs_shared["latents"] = inputs_shared["latents"][:, :, 1:]
# Decode
self.load_models_to_device(["vae"])
video = self.vae.decode(
inputs_shared["latents"],
device=self.device,
tiled=tiled,
tile_size=tile_size,
tile_stride=tile_stride,
)
video = self.vae_output_to_video(video)
self.load_models_to_device([])
return video
class WanVideoUnit_ShapeChecker(PipelineUnit):
def __init__(self):
super().__init__(input_params=("height", "width", "num_frames"))
def process(self, pipe: WanVideoPipeline_FaceSwap, height, width, num_frames):
height, width, num_frames = pipe.check_resize_height_width(
height, width, num_frames
)
return {"height": height, "width": width, "num_frames": num_frames}
class WanVideoUnit_NoiseInitializer(PipelineUnit):
def __init__(self):
super().__init__(
input_params=(
"height",
"width",
"num_frames",
"seed",
"rand_device",
"vace_reference_image",
)
)
def process(
self,
pipe: WanVideoPipeline_FaceSwap,
height,
width,
num_frames,
seed,
rand_device,
vace_reference_image,
):
length = (num_frames - 1) // 4 + 1
if vace_reference_image is not None:
length += 1
shape = (
1,
pipe.vae.model.z_dim,
length,
height // pipe.vae.upsampling_factor,
width // pipe.vae.upsampling_factor,
)
noise = pipe.generate_noise(shape, seed=seed, rand_device=rand_device)
if vace_reference_image is not None:
noise = torch.concat((noise[:, :, -1:], noise[:, :, :-1]), dim=2)
return {"noise": noise}
class WanVideoUnit_InputVideoEmbedder(PipelineUnit):
def __init__(self):
super().__init__(
input_params=(
"input_video",
"noise",
"tiled",
"tile_size",
"tile_stride",
"vace_reference_image",
),
onload_model_names=("vae",),
)
def process(
self,
pipe: WanVideoPipeline_FaceSwap,
input_video,
noise,
tiled,
tile_size,
tile_stride,
vace_reference_image,
):
if input_video is None:
return {"latents": noise}
pipe.load_models_to_device(["vae"])
input_video = pipe.preprocess_video(input_video)
input_latents = pipe.vae.encode(
input_video,
device=pipe.device,
tiled=tiled,
tile_size=tile_size,
tile_stride=tile_stride,
).to(dtype=pipe.torch_dtype, device=pipe.device)
if vace_reference_image is not None:
vace_reference_image = pipe.preprocess_video([vace_reference_image])
vace_reference_latents = pipe.vae.encode(
vace_reference_image, device=pipe.device
).to(dtype=pipe.torch_dtype, device=pipe.device)
input_latents = torch.concat([vace_reference_latents, input_latents], dim=2)
if pipe.scheduler.training:
return {"latents": noise, "input_latents": input_latents}
else:
latents = pipe.scheduler.add_noise(
input_latents, noise, timestep=pipe.scheduler.timesteps[0]
)
return {"latents": latents, "input_latents": input_latents}
class WanVideoUnit_PromptEmbedder(PipelineUnit):
def __init__(self):
super().__init__(
seperate_cfg=True,
input_params_posi={"prompt": "prompt", "positive": "positive"},
input_params_nega={"prompt": "negative_prompt", "positive": "positive"},
onload_model_names=("text_encoder",),
)
def process(self, pipe: WanVideoPipeline_FaceSwap, prompt, positive) -> dict:
pipe.load_models_to_device(self.onload_model_names)
prompt_emb = pipe.prompter.encode_prompt(
prompt, positive=positive, device=pipe.device
)
return {"context": prompt_emb}
class WanVideoUnit_ImageEmbedder(PipelineUnit):
"""
Deprecated
"""
def __init__(self):
super().__init__(
input_params=(
"input_image",
"end_image",
"num_frames",
"height",
"width",
"tiled",
"tile_size",
"tile_stride",
),
onload_model_names=("image_encoder", "vae"),
)
def process(
self,
pipe: WanVideoPipeline_FaceSwap,
input_image,
end_image,
num_frames,
height,
width,
tiled,
tile_size,
tile_stride,
):
if input_image is None or pipe.image_encoder is None:
return {}
pipe.load_models_to_device(self.onload_model_names)
image = pipe.preprocess_image(input_image.resize((width, height))).to(
pipe.device
)
clip_context = pipe.image_encoder.encode_image([image])
msk = torch.ones(1, num_frames, height // 8, width // 8, device=pipe.device)
msk[:, 1:] = 0
if end_image is not None:
end_image = pipe.preprocess_image(end_image.resize((width, height))).to(
pipe.device
)
vae_input = torch.concat(
[
image.transpose(0, 1),
torch.zeros(3, num_frames - 2, height, width).to(image.device),
end_image.transpose(0, 1),
],
dim=1,
)
if pipe.dit.has_image_pos_emb:
clip_context = torch.concat(
[clip_context, pipe.image_encoder.encode_image([end_image])], dim=1
)
msk[:, -1:] = 1
else:
vae_input = torch.concat(
[
image.transpose(0, 1),
torch.zeros(3, num_frames - 1, height, width).to(image.device),
],
dim=1,
)
msk = torch.concat(
[torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1
)
msk = msk.view(1, msk.shape[1] // 4, 4, height // 8, width // 8)
msk = msk.transpose(1, 2)[0]
y = pipe.vae.encode(
[vae_input.to(dtype=pipe.torch_dtype, device=pipe.device)],
device=pipe.device,
tiled=tiled,
tile_size=tile_size,
tile_stride=tile_stride,
)[0]
y = y.to(dtype=pipe.torch_dtype, device=pipe.device)
y = torch.concat([msk, y])
y = y.unsqueeze(0)
clip_context = clip_context.to(dtype=pipe.torch_dtype, device=pipe.device)
y = y.to(dtype=pipe.torch_dtype, device=pipe.device)
return {"clip_feature": clip_context, "y": y}
class WanVideoUnit_ImageEmbedderCLIP(PipelineUnit):
def __init__(self):
super().__init__(
input_params=("input_image", "end_image", "height", "width"),
onload_model_names=("image_encoder",),
)
def process(
self, pipe: WanVideoPipeline_FaceSwap, input_image, end_image, height, width
):
if (
input_image is None
or pipe.image_encoder is None
or not pipe.dit.require_clip_embedding
):
return {}
pipe.load_models_to_device(self.onload_model_names)
image = pipe.preprocess_image(input_image.resize((width, height))).to(
pipe.device
)
clip_context = pipe.image_encoder.encode_image([image])
if end_image is not None:
end_image = pipe.preprocess_image(end_image.resize((width, height))).to(
pipe.device
)
if pipe.dit.has_image_pos_emb:
clip_context = torch.concat(
[clip_context, pipe.image_encoder.encode_image([end_image])], dim=1
)
clip_context = clip_context.to(dtype=pipe.torch_dtype, device=pipe.device)
return {"clip_feature": clip_context}
class WanVideoUnit_ImageEmbedderVAE(PipelineUnit):
def __init__(self):
super().__init__(
input_params=(
"input_image",
"end_image",
"num_frames",
"height",
"width",
"tiled",
"tile_size",
"tile_stride",
),
onload_model_names=("vae",),
)
def process(
self,
pipe: WanVideoPipeline_FaceSwap,
input_image,
end_image,
num_frames,
height,
width,
tiled,
tile_size,
tile_stride,
):
if input_image is None or not pipe.dit.require_vae_embedding:
return {}
pipe.load_models_to_device(self.onload_model_names)
image = pipe.preprocess_image(input_image.resize((width, height))).to(
pipe.device
)
msk = torch.ones(1, num_frames, height // 8, width // 8, device=pipe.device)
msk[:, 1:] = 0
if end_image is not None:
end_image = pipe.preprocess_image(end_image.resize((width, height))).to(
pipe.device
)
vae_input = torch.concat(
[
image.transpose(0, 1),
torch.zeros(3, num_frames - 2, height, width).to(image.device),
end_image.transpose(0, 1),
],
dim=1,
)
msk[:, -1:] = 1
else:
vae_input = torch.concat(
[
image.transpose(0, 1),
torch.zeros(3, num_frames - 1, height, width).to(image.device),
],
dim=1,
)
msk = torch.concat(
[torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1
)
msk = msk.view(1, msk.shape[1] // 4, 4, height // 8, width // 8)
msk = msk.transpose(1, 2)[0]
y = pipe.vae.encode(
[vae_input.to(dtype=pipe.torch_dtype, device=pipe.device)],
device=pipe.device,
tiled=tiled,
tile_size=tile_size,
tile_stride=tile_stride,
)[0]
y = y.to(dtype=pipe.torch_dtype, device=pipe.device)
y = torch.concat([msk, y])
y = y.unsqueeze(0)
y = y.to(dtype=pipe.torch_dtype, device=pipe.device)
return {"y": y}
class WanVideoUnit_ImageEmbedderFused(PipelineUnit):
"""
Encode input image to latents using VAE. This unit is for Wan-AI/Wan2.2-TI2V-5B.
"""
def __init__(self):
super().__init__(
input_params=(
"input_image",
"latents",
"height",
"width",
"tiled",
"tile_size",
"tile_stride",
),
onload_model_names=("vae",),
)
def process(
self,
pipe: WanVideoPipeline_FaceSwap,
input_image,
latents,
height,
width,
tiled,
tile_size,
tile_stride,
):
if input_image is None or not pipe.dit.fuse_vae_embedding_in_latents:
return {}
pipe.load_models_to_device(self.onload_model_names)
image = pipe.preprocess_image(input_image.resize((width, height))).transpose(
0, 1
)
z = pipe.vae.encode(
[image],
device=pipe.device,
tiled=tiled,
tile_size=tile_size,
tile_stride=tile_stride,
)
latents[:, :, 0:1] = z
return {
"latents": latents,
"fuse_vae_embedding_in_latents": True,
"first_frame_latents": z,
}
class WanVideoUnit_FunControl(PipelineUnit):
def __init__(self):
super().__init__(
input_params=(
"control_video",
"num_frames",
"height",
"width",
"tiled",
"tile_size",
"tile_stride",
"clip_feature",
"y",
),
onload_model_names=("vae",),
)
def process(
self,
pipe: WanVideoPipeline_FaceSwap,
control_video,
num_frames,
height,
width,
tiled,
tile_size,
tile_stride,
clip_feature,
y,
):
if control_video is None:
return {}
pipe.load_models_to_device(self.onload_model_names)
control_video = pipe.preprocess_video(control_video)
control_latents = pipe.vae.encode(
control_video,
device=pipe.device,
tiled=tiled,
tile_size=tile_size,
tile_stride=tile_stride,
).to(dtype=pipe.torch_dtype, device=pipe.device)
control_latents = control_latents.to(dtype=pipe.torch_dtype, device=pipe.device)
if clip_feature is None or y is None:
clip_feature = torch.zeros(
(1, 257, 1280), dtype=pipe.torch_dtype, device=pipe.device
)
y = torch.zeros(
(1, 16, (num_frames - 1) // 4 + 1, height // 8, width // 8),
dtype=pipe.torch_dtype,
device=pipe.device,
)
else:
y = y[:, -16:]
y = torch.concat([control_latents, y], dim=1)
return {"clip_feature": clip_feature, "y": y}
class WanVideoUnit_FunReference(PipelineUnit):
def __init__(self):
super().__init__(
input_params=("reference_image", "height", "width", "reference_image"),
onload_model_names=("vae",),
)
def process(self, pipe: WanVideoPipeline_FaceSwap, reference_image, height, width):
if reference_image is None:
return {}
pipe.load_models_to_device(["vae"])
reference_image = reference_image.resize((width, height))
reference_latents = pipe.preprocess_video([reference_image])
reference_latents = pipe.vae.encode(reference_latents, device=pipe.device)
clip_feature = pipe.preprocess_image(reference_image)
clip_feature = pipe.image_encoder.encode_image([clip_feature])
return {"reference_latents": reference_latents, "clip_feature": clip_feature}
class WanVideoUnit_FunCameraControl(PipelineUnit):
def __init__(self):
super().__init__(
input_params=(
"height",
"width",
"num_frames",
"camera_control_direction",
"camera_control_speed",
"camera_control_origin",
"latents",
"input_image",
),
onload_model_names=("vae",),
)
def process(
self,
pipe: WanVideoPipeline_FaceSwap,
height,
width,
num_frames,
camera_control_direction,
camera_control_speed,
camera_control_origin,
latents,
input_image,
):
if camera_control_direction is None:
return {}
camera_control_plucker_embedding = (
pipe.dit.control_adapter.process_camera_coordinates(
camera_control_direction,
num_frames,
height,
width,
camera_control_speed,
camera_control_origin,
)
)
control_camera_video = (
camera_control_plucker_embedding[:num_frames]
.permute([3, 0, 1, 2])
.unsqueeze(0)
)
control_camera_latents = torch.concat(
[
torch.repeat_interleave(
control_camera_video[:, :, 0:1], repeats=4, dim=2
),
control_camera_video[:, :, 1:],
],
dim=2,
).transpose(1, 2)
b, f, c, h, w = control_camera_latents.shape
control_camera_latents = (
control_camera_latents.contiguous()
.view(b, f // 4, 4, c, h, w)
.transpose(2, 3)
)
control_camera_latents = (
control_camera_latents.contiguous()
.view(b, f // 4, c * 4, h, w)
.transpose(1, 2)
)
control_camera_latents_input = control_camera_latents.to(
device=pipe.device, dtype=pipe.torch_dtype
)
input_image = input_image.resize((width, height))
input_latents = pipe.preprocess_video([input_image])
pipe.load_models_to_device(self.onload_model_names)
input_latents = pipe.vae.encode(input_latents, device=pipe.device)
y = torch.zeros_like(latents).to(pipe.device)
y[:, :, :1] = input_latents
y = y.to(dtype=pipe.torch_dtype, device=pipe.device)
return {"control_camera_latents_input": control_camera_latents_input, "y": y}
class WanVideoUnit_SpeedControl(PipelineUnit):
def __init__(self):
super().__init__(input_params=("motion_bucket_id",))
def process(self, pipe: WanVideoPipeline_FaceSwap, motion_bucket_id):
if motion_bucket_id is None:
return {}
motion_bucket_id = torch.Tensor((motion_bucket_id,)).to(
dtype=pipe.torch_dtype, device=pipe.device
)
return {"motion_bucket_id": motion_bucket_id}
class WanVideoUnit_VACE(PipelineUnit):
def __init__(self):
super().__init__(
input_params=(
"vace_video",
"vace_video_mask",
"vace_reference_image",
"vace_scale",
"height",
"width",
"num_frames",
"tiled",
"tile_size",
"tile_stride",
),
onload_model_names=("vae",),
)
def process(
self,
pipe: WanVideoPipeline_FaceSwap,
vace_video,
vace_video_mask,
vace_reference_image,
vace_scale,
height,
width,
num_frames,
tiled,
tile_size,
tile_stride,
):
if (
vace_video is not None
or vace_video_mask is not None
or vace_reference_image is not None
):
pipe.load_models_to_device(["vae"])
if vace_video is None:
vace_video = torch.zeros(
(1, 3, num_frames, height, width),
dtype=pipe.torch_dtype,
device=pipe.device,
)
else:
vace_video = pipe.preprocess_video(vace_video)
if vace_video_mask is None:
vace_video_mask = torch.ones_like(vace_video)
else:
vace_video_mask = pipe.preprocess_video(
vace_video_mask, min_value=0, max_value=1
)
inactive = vace_video * (1 - vace_video_mask) + 0 * vace_video_mask
reactive = vace_video * vace_video_mask + 0 * (1 - vace_video_mask)
inactive = pipe.vae.encode(
inactive,
device=pipe.device,
tiled=tiled,
tile_size=tile_size,
tile_stride=tile_stride,
).to(dtype=pipe.torch_dtype, device=pipe.device)
reactive = pipe.vae.encode(
reactive,
device=pipe.device,
tiled=tiled,
tile_size=tile_size,
tile_stride=tile_stride,
).to(dtype=pipe.torch_dtype, device=pipe.device)
vace_video_latents = torch.concat((inactive, reactive), dim=1)
vace_mask_latents = rearrange(
vace_video_mask[0, 0], "T (H P) (W Q) -> 1 (P Q) T H W", P=8, Q=8
)
vace_mask_latents = torch.nn.functional.interpolate(
vace_mask_latents,
size=(
(vace_mask_latents.shape[2] + 3) // 4,
vace_mask_latents.shape[3],
vace_mask_latents.shape[4],
),
mode="nearest-exact",
)
if vace_reference_image is None:
pass
else:
vace_reference_image = pipe.preprocess_video([vace_reference_image])
vace_reference_latents = pipe.vae.encode(
vace_reference_image,
device=pipe.device,
tiled=tiled,
tile_size=tile_size,
tile_stride=tile_stride,
).to(dtype=pipe.torch_dtype, device=pipe.device)
vace_reference_latents = torch.concat(
(vace_reference_latents, torch.zeros_like(vace_reference_latents)),
dim=1,
)
vace_video_latents = torch.concat(
(vace_reference_latents, vace_video_latents), dim=2
)
vace_mask_latents = torch.concat(
(torch.zeros_like(vace_mask_latents[:, :, :1]), vace_mask_latents),
dim=2,
)
vace_context = torch.concat((vace_video_latents, vace_mask_latents), dim=1)
return {"vace_context": vace_context, "vace_scale": vace_scale}
else:
return {"vace_context": None, "vace_scale": vace_scale}
class WanVideoUnit_UnifiedSequenceParallel(PipelineUnit):
def __init__(self):
super().__init__(input_params=())
def process(self, pipe: WanVideoPipeline_FaceSwap):
if hasattr(pipe, "use_unified_sequence_parallel"):
if pipe.use_unified_sequence_parallel:
return {"use_unified_sequence_parallel": True}
return {}
class WanVideoUnit_TeaCache(PipelineUnit):
def __init__(self):
super().__init__(
seperate_cfg=True,
input_params_posi={
"num_inference_steps": "num_inference_steps",
"tea_cache_l1_thresh": "tea_cache_l1_thresh",
"tea_cache_model_id": "tea_cache_model_id",
},
input_params_nega={
"num_inference_steps": "num_inference_steps",
"tea_cache_l1_thresh": "tea_cache_l1_thresh",
"tea_cache_model_id": "tea_cache_model_id",
},
)
def process(
self,
pipe: WanVideoPipeline_FaceSwap,
num_inference_steps,
tea_cache_l1_thresh,
tea_cache_model_id,
):
if tea_cache_l1_thresh is None:
return {}
return {
"tea_cache": TeaCache(
num_inference_steps,
rel_l1_thresh=tea_cache_l1_thresh,
model_id=tea_cache_model_id,
)
}
class WanVideoUnit_CfgMerger(PipelineUnit):
def __init__(self):
super().__init__(take_over=True)
self.concat_tensor_names = ["context", "clip_feature", "y", "reference_latents"]
def process(
self, pipe: WanVideoPipeline_FaceSwap, inputs_shared, inputs_posi, inputs_nega
):
if not inputs_shared["cfg_merge"]:
return inputs_shared, inputs_posi, inputs_nega
for name in self.concat_tensor_names:
tensor_posi = inputs_posi.get(name)
tensor_nega = inputs_nega.get(name)
tensor_shared = inputs_shared.get(name)
if tensor_posi is not None and tensor_nega is not None:
inputs_shared[name] = torch.concat((tensor_posi, tensor_nega), dim=0)
elif tensor_shared is not None:
inputs_shared[name] = torch.concat(
(tensor_shared, tensor_shared), dim=0
)
inputs_posi.clear()
inputs_nega.clear()
return inputs_shared, inputs_posi, inputs_nega
class TeaCache:
def __init__(self, num_inference_steps, rel_l1_thresh, model_id):
self.num_inference_steps = num_inference_steps
self.step = 0
self.accumulated_rel_l1_distance = 0
self.previous_modulated_input = None
self.rel_l1_thresh = rel_l1_thresh
self.previous_residual = None
self.previous_hidden_states = None
self.coefficients_dict = {
"Wan2.1-T2V-1.3B": [
-5.21862437e04,
9.23041404e03,
-5.28275948e02,
1.36987616e01,
-4.99875664e-02,
],
"Wan2.1-T2V-14B": [
-3.03318725e05,
4.90537029e04,
-2.65530556e03,
5.87365115e01,
-3.15583525e-01,
],
"Wan2.1-I2V-14B-480P": [
2.57151496e05,
-3.54229917e04,
1.40286849e03,
-1.35890334e01,
1.32517977e-01,
],
"Wan2.1-I2V-14B-720P": [
8.10705460e03,
2.13393892e03,
-3.72934672e02,
1.66203073e01,
-4.17769401e-02,
],
}
if model_id not in self.coefficients_dict:
supported_model_ids = ", ".join([i for i in self.coefficients_dict])
raise ValueError(
f"{model_id} is not a supported TeaCache model id. Please choose a valid model id in ({supported_model_ids})."
)
self.coefficients = self.coefficients_dict[model_id]
def check(self, dit: WanModel, x, t_mod):
modulated_inp = t_mod.clone()
if self.step == 0 or self.step == self.num_inference_steps - 1:
should_calc = True
self.accumulated_rel_l1_distance = 0
else:
coefficients = self.coefficients
rescale_func = np.poly1d(coefficients)
self.accumulated_rel_l1_distance += rescale_func(
(
(modulated_inp - self.previous_modulated_input).abs().mean()
/ self.previous_modulated_input.abs().mean()
)
.cpu()
.item()
)
if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
should_calc = False
else:
should_calc = True
self.accumulated_rel_l1_distance = 0
self.previous_modulated_input = modulated_inp
self.step += 1
if self.step == self.num_inference_steps:
self.step = 0
if should_calc:
self.previous_hidden_states = x.clone()
return not should_calc
def store(self, hidden_states):
self.previous_residual = hidden_states - self.previous_hidden_states
self.previous_hidden_states = None
def update(self, hidden_states):
hidden_states = hidden_states + self.previous_residual
return hidden_states
class TemporalTiler_BCTHW:
def __init__(self):
pass
def build_1d_mask(self, length, left_bound, right_bound, border_width):
x = torch.ones((length,))
if not left_bound:
x[:border_width] = (torch.arange(border_width) + 1) / border_width
if not right_bound:
x[-border_width:] = torch.flip(
(torch.arange(border_width) + 1) / border_width, dims=(0,)
)
return x
def build_mask(self, data, is_bound, border_width):
_, _, T, _, _ = data.shape
t = self.build_1d_mask(T, is_bound[0], is_bound[1], border_width[0])
mask = repeat(t, "T -> 1 1 T 1 1")
return mask
def run(
self,
model_fn,
sliding_window_size,
sliding_window_stride,
computation_device,
computation_dtype,
model_kwargs,
tensor_names,
batch_size=None,
):
tensor_names = [
tensor_name
for tensor_name in tensor_names
if model_kwargs.get(tensor_name) is not None
]
tensor_dict = {
tensor_name: model_kwargs[tensor_name] for tensor_name in tensor_names
}
B, C, T, H, W = tensor_dict[tensor_names[0]].shape
if batch_size is not None:
B *= batch_size
data_device, data_dtype = (
tensor_dict[tensor_names[0]].device,
tensor_dict[tensor_names[0]].dtype,
)
value = torch.zeros((B, C, T, H, W), device=data_device, dtype=data_dtype)
weight = torch.zeros((1, 1, T, 1, 1), device=data_device, dtype=data_dtype)
for t in range(0, T, sliding_window_stride):
if (
t - sliding_window_stride >= 0
and t - sliding_window_stride + sliding_window_size >= T
):
continue
t_ = min(t + sliding_window_size, T)
model_kwargs.update(
{
tensor_name: tensor_dict[tensor_name][:, :, t:t_:, :].to(
device=computation_device, dtype=computation_dtype
)
for tensor_name in tensor_names
}
)
model_output = model_fn(**model_kwargs).to(
device=data_device, dtype=data_dtype
)
mask = self.build_mask(
model_output,
is_bound=(t == 0, t_ == T),
border_width=(sliding_window_size - sliding_window_stride,),
).to(device=data_device, dtype=data_dtype)
value[:, :, t:t_, :, :] += model_output * mask
weight[:, :, t:t_, :, :] += mask
value /= weight
model_kwargs.update(tensor_dict)
return value
def model_fn_wan_video(
dit: WanModel,
motion_controller: WanMotionControllerModel = None,
vace: VaceWanModel = None,
latents: torch.Tensor = None,
timestep: torch.Tensor = None,
context: torch.Tensor = None,
clip_feature: Optional[torch.Tensor] = None,
y: Optional[torch.Tensor] = None,
reference_latents=None,
vace_context=None,
vace_scale=1.0,
tea_cache: TeaCache = None,
use_unified_sequence_parallel: bool = False,
motion_bucket_id: Optional[torch.Tensor] = None,
sliding_window_size: Optional[int] = None,
sliding_window_stride: Optional[int] = None,
cfg_merge: bool = False,
use_gradient_checkpointing: bool = False,
use_gradient_checkpointing_offload: bool = False,
control_camera_latents_input=None,
fuse_vae_embedding_in_latents: bool = False,
ip_image=None,
**kwargs,
):
if sliding_window_size is not None and sliding_window_stride is not None:
model_kwargs = dict(
dit=dit,
motion_controller=motion_controller,
vace=vace,
latents=latents,
timestep=timestep,
context=context,
clip_feature=clip_feature,
y=y,
reference_latents=reference_latents,
vace_context=vace_context,
vace_scale=vace_scale,
tea_cache=tea_cache,
use_unified_sequence_parallel=use_unified_sequence_parallel,
motion_bucket_id=motion_bucket_id,
)
return TemporalTiler_BCTHW().run(
model_fn_wan_video,
sliding_window_size,
sliding_window_stride,
latents.device,
latents.dtype,
model_kwargs=model_kwargs,
tensor_names=["latents", "y"],
batch_size=2 if cfg_merge else 1,
)
if use_unified_sequence_parallel:
import torch.distributed as dist
from xfuser.core.distributed import (
get_sequence_parallel_rank,
get_sequence_parallel_world_size,
get_sp_group,
)
x_ip = None
t_mod_ip = None
# Timestep
if dit.seperated_timestep and fuse_vae_embedding_in_latents:
timestep = torch.concat(
[
torch.zeros(
(1, latents.shape[3] * latents.shape[4] // 4),
dtype=latents.dtype,
device=latents.device,
),
torch.ones(
(latents.shape[2] - 1, latents.shape[3] * latents.shape[4] // 4),
dtype=latents.dtype,
device=latents.device,
)
* timestep,
]
).flatten()
t = dit.time_embedding(
sinusoidal_embedding_1d(dit.freq_dim, timestep).unsqueeze(0)
)
t_mod = dit.time_projection(t).unflatten(2, (6, dit.dim))
else:
t = dit.time_embedding(sinusoidal_embedding_1d(dit.freq_dim, timestep))
t_mod = dit.time_projection(t).unflatten(1, (6, dit.dim))
if ip_image is not None:
timestep_ip = torch.zeros_like(timestep) # [B] with 0s
t_ip = dit.time_embedding(sinusoidal_embedding_1d(dit.freq_dim, timestep_ip))
t_mod_ip = dit.time_projection(t_ip).unflatten(1, (6, dit.dim))
# Motion Controller
if motion_bucket_id is not None and motion_controller is not None:
t_mod = t_mod + motion_controller(motion_bucket_id).unflatten(1, (6, dit.dim))
context = dit.text_embedding(context)
x = latents
# Merged cfg
if x.shape[0] != context.shape[0]:
x = torch.concat([x] * context.shape[0], dim=0)
if timestep.shape[0] != context.shape[0]:
timestep = torch.concat([timestep] * context.shape[0], dim=0)
# Image Embedding
if y is not None and dit.require_vae_embedding:
x = torch.cat([x, y], dim=1)
if clip_feature is not None and dit.require_clip_embedding:
clip_embdding = dit.img_emb(clip_feature)
context = torch.cat([clip_embdding, context], dim=1)
# Add camera control
x, (f, h, w) = dit.patchify(x, control_camera_latents_input)
# Reference image
if reference_latents is not None:
if len(reference_latents.shape) == 5:
reference_latents = reference_latents[:, :, 0]
reference_latents = dit.ref_conv(reference_latents).flatten(2).transpose(1, 2)
x = torch.concat([reference_latents, x], dim=1)
f += 1
offset = 1
freqs = (
torch.cat(
[
dit.freqs[0][offset : f + offset].view(f, 1, 1, -1).expand(f, h, w, -1),
dit.freqs[1][offset : h + offset].view(1, h, 1, -1).expand(f, h, w, -1),
dit.freqs[2][offset : w + offset].view(1, 1, w, -1).expand(f, h, w, -1),
],
dim=-1,
)
.reshape(f * h * w, 1, -1)
.to(x.device)
)
############################################################################################
if ip_image is not None:
x_ip, (f_ip, h_ip, w_ip) = dit.patchify(
ip_image
) # x_ip [1, 1024, 5120] [B, N, D] f_ip = 1 h_ip = 32 w_ip = 32
freqs_ip = (
torch.cat(
[
dit.freqs[0][0].view(f_ip, 1, 1, -1).expand(f_ip, h_ip, w_ip, -1),
dit.freqs[1][h + offset : h + offset + h_ip]
.view(1, h_ip, 1, -1)
.expand(f_ip, h_ip, w_ip, -1),
dit.freqs[2][w + offset : w + offset + w_ip]
.view(1, 1, w_ip, -1)
.expand(f_ip, h_ip, w_ip, -1),
],
dim=-1,
)
.reshape(f_ip * h_ip * w_ip, 1, -1)
.to(x_ip.device)
)
freqs_original = freqs
freqs = torch.cat([freqs, freqs_ip], dim=0)
############################################################################################
else:
freqs_original = freqs
# TeaCache
if tea_cache is not None:
tea_cache_update = tea_cache.check(dit, x, t_mod)
else:
tea_cache_update = False
if vace_context is not None:
vace_hints = vace(x, vace_context, context, t_mod, freqs)
# blocks
if use_unified_sequence_parallel:
if dist.is_initialized() and dist.get_world_size() > 1:
x = torch.chunk(x, get_sequence_parallel_world_size(), dim=1)[
get_sequence_parallel_rank()
]
if tea_cache_update:
x = tea_cache.update(x)
else:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
for block_id, block in enumerate(dit.blocks):
if use_gradient_checkpointing_offload:
with torch.autograd.graph.save_on_cpu():
x, x_ip = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
x,
context,
t_mod,
freqs,
x_ip=x_ip,
t_mod_ip=t_mod_ip,
use_reentrant=False,
)
elif use_gradient_checkpointing:
x, x_ip = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
x,
context,
t_mod,
freqs,
x_ip=x_ip,
t_mod_ip=t_mod_ip,
use_reentrant=False,
)
else:
x, x_ip = block(x, context, t_mod, freqs, x_ip=x_ip, t_mod_ip=t_mod_ip)
if vace_context is not None and block_id in vace.vace_layers_mapping:
current_vace_hint = vace_hints[vace.vace_layers_mapping[block_id]]
if (
use_unified_sequence_parallel
and dist.is_initialized()
and dist.get_world_size() > 1
):
current_vace_hint = torch.chunk(
current_vace_hint, get_sequence_parallel_world_size(), dim=1
)[get_sequence_parallel_rank()]
x = x + current_vace_hint * vace_scale
if tea_cache is not None:
tea_cache.store(x)
x = dit.head(x, t)
if use_unified_sequence_parallel:
if dist.is_initialized() and dist.get_world_size() > 1:
x = get_sp_group().all_gather(x, dim=1)
# Remove reference latents
if reference_latents is not None:
x = x[:, reference_latents.shape[1] :]
f -= 1
x = dit.unpatchify(x, (f, h, w))
return x