import torch from data.video import save_video from wan_loader import load_wan_pipe from models.set_condition_branch import set_stand_in from preprocessor import FaceProcessor, VideoMaskGenerator import argparse parser = argparse.ArgumentParser() parser.add_argument( "--ip_image", type=str, default="test/input/ruonan.jpg", help="Input face image path or URL", ) parser.add_argument( "--input_video", type=str, default="test/input/woman.mp4", help="Input video path", ) parser.add_argument( "--denoising_strength", type=float, default=0.85, help="The lower denoising strength represents a higher similarity to the original video.", ) parser.add_argument( "--prompt", type=str, default="The video features a woman standing in front of a large screen displaying the words " "Tech Minute" " and the logo for CNET. She is wearing a purple top and appears to be presenting or speaking about technology-related topics. The background includes a cityscape with tall buildings, suggesting an urban setting. The woman seems to be engaged in a discussion or providing information on technology news or trends. The overall atmosphere is professional and informative, likely aimed at educating viewers about the latest developments in the tech industry.", help="Text prompt for video generation", ) parser.add_argument( "--output", type=str, default="test/output/ruonan.mp4", help="Output video file path", ) parser.add_argument( "--seed", type=int, default=0, help="Random seed for reproducibility" ) parser.add_argument( "--num_inference_steps", type=int, default=20, help="Number of inference steps" ) parser.add_argument( "--force_background_consistency", type=bool, default=False, help="Set to True to force background consistency across generated frames.", ) parser.add_argument( "--negative_prompt", type=str, default="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走", help="Negative prompt to avoid unwanted features", ) parser.add_argument("--tiled", action="store_true", help="Enable tiled mode") parser.add_argument( "--fps", type=int, default=25, help="Frames per second for output video" ) parser.add_argument( "--quality", type=int, default=9, help="Output video quality (1-9)" ) parser.add_argument( "--base_path", type=str, default="checkpoints/base_model/", help="Path to base model checkpoint", ) parser.add_argument( "--stand_in_path", type=str, default="checkpoints/Stand-In/Stand-In_wan2.1_T2V_14B_ver1.0.ckpt", help="Path to LoRA weights checkpoint", ) parser.add_argument( "--antelopv2_path", type=str, default="checkpoints/antelopev2", help="Path to AntelopeV2 model checkpoint", ) args = parser.parse_args() face_processor = FaceProcessor(antelopv2_path=args.antelopv2_path) videomask_generator = VideoMaskGenerator(antelopv2_path=args.antelopv2_path) ip_image, ip_image_rgba = face_processor.process(args.ip_image, extra_input=True) input_video, face_mask, width, height, num_frames = videomask_generator.process(args.input_video, ip_image_rgba, random_horizontal_flip_chance=0.05, dilation_kernel_size=10) pipe = load_wan_pipe( base_path=args.base_path, face_swap=True, torch_dtype=torch.bfloat16 ) set_stand_in( pipe, model_path=args.stand_in_path, ) video = pipe( prompt=args.prompt, negative_prompt=args.negative_prompt, seed=args.seed, width=width, height=height, num_frames=num_frames, denoising_strength=args.denoising_strength, ip_image=ip_image, face_mask=face_mask, input_video=input_video, num_inference_steps=args.num_inference_steps, tiled=args.tiled, force_background_consistency=args.force_background_consistency ) save_video(video, args.output, fps=args.fps, quality=args.quality)