import torch import torch.nn as nn import torch.nn.functional as F import math from typing import Tuple, Optional from einops import rearrange from .utils import hash_state_dict_keys from .wan_video_camera_controller import SimpleAdapter try: import flash_attn_interface FLASH_ATTN_3_AVAILABLE = True except ModuleNotFoundError: FLASH_ATTN_3_AVAILABLE = False try: import flash_attn FLASH_ATTN_2_AVAILABLE = True except ModuleNotFoundError: FLASH_ATTN_2_AVAILABLE = False try: from sageattention import sageattn SAGE_ATTN_AVAILABLE = True except ModuleNotFoundError: SAGE_ATTN_AVAILABLE = False def flash_attention( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, num_heads: int, compatibility_mode=False, ): if compatibility_mode: q = rearrange(q, "b s (n d) -> b n s d", n=num_heads) k = rearrange(k, "b s (n d) -> b n s d", n=num_heads) v = rearrange(v, "b s (n d) -> b n s d", n=num_heads) x = F.scaled_dot_product_attention(q, k, v) x = rearrange(x, "b n s d -> b s (n d)", n=num_heads) elif FLASH_ATTN_3_AVAILABLE: q = rearrange(q, "b s (n d) -> b s n d", n=num_heads) k = rearrange(k, "b s (n d) -> b s n d", n=num_heads) v = rearrange(v, "b s (n d) -> b s n d", n=num_heads) x = flash_attn_interface.flash_attn_func(q, k, v) if isinstance(x, tuple): x = x[0] x = rearrange(x, "b s n d -> b s (n d)", n=num_heads) elif FLASH_ATTN_2_AVAILABLE: q = rearrange(q, "b s (n d) -> b s n d", n=num_heads) k = rearrange(k, "b s (n d) -> b s n d", n=num_heads) v = rearrange(v, "b s (n d) -> b s n d", n=num_heads) x = flash_attn.flash_attn_func(q, k, v) x = rearrange(x, "b s n d -> b s (n d)", n=num_heads) elif SAGE_ATTN_AVAILABLE: q = rearrange(q, "b s (n d) -> b n s d", n=num_heads) k = rearrange(k, "b s (n d) -> b n s d", n=num_heads) v = rearrange(v, "b s (n d) -> b n s d", n=num_heads) x = sageattn(q, k, v, tensor_layout="HND", is_causal=False) x = rearrange(x, "b n s d -> b s (n d)", n=num_heads) else: q = rearrange(q, "b s (n d) -> b n s d", n=num_heads) k = rearrange(k, "b s (n d) -> b n s d", n=num_heads) v = rearrange(v, "b s (n d) -> b n s d", n=num_heads) x = F.scaled_dot_product_attention(q, k, v) x = rearrange(x, "b n s d -> b s (n d)", n=num_heads) return x def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor): return x * (1 + scale) + shift def sinusoidal_embedding_1d(dim, position): sinusoid = torch.outer( position.type(torch.float64), torch.pow( 10000, -torch.arange(dim // 2, dtype=torch.float64, device=position.device).div( dim // 2 ), ), ) x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) return x.to(position.dtype) def precompute_freqs_cis_3d(dim: int, end: int = 1024, theta: float = 10000.0): # 3d rope precompute f_freqs_cis = precompute_freqs_cis(dim - 2 * (dim // 3), end + 1, theta) h_freqs_cis = precompute_freqs_cis(dim // 3, end, theta) w_freqs_cis = precompute_freqs_cis(dim // 3, end, theta) return f_freqs_cis, h_freqs_cis, w_freqs_cis def precompute_freqs_cis(dim: int, end: int = 1024, theta: float = 10000.0): # 1d rope precompute freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].double() / dim)) ###################################################### add f = -1 positions = torch.arange(-1, end, device=freqs.device) freqs = torch.outer(positions, freqs) freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 ###################################################### return freqs_cis def rope_apply(x, freqs, num_heads): x = rearrange(x, "b s (n d) -> b s n d", n=num_heads) x_out = torch.view_as_complex( x.to(torch.float64).reshape(x.shape[0], x.shape[1], x.shape[2], -1, 2) ) x_out = torch.view_as_real(x_out * freqs).flatten(2) return x_out.to(x.dtype) class RMSNorm(nn.Module): def __init__(self, dim, eps=1e-5): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def norm(self, x): return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps) def forward(self, x): dtype = x.dtype return self.norm(x.float()).to(dtype) * self.weight class AttentionModule(nn.Module): def __init__(self, num_heads): super().__init__() self.num_heads = num_heads def forward(self, q, k, v): x = flash_attention(q=q, k=k, v=v, num_heads=self.num_heads) return x class LoRALinearLayer(nn.Module): def __init__( self, in_features: int, out_features: int, rank: int = 128, device="cuda", dtype: Optional[torch.dtype] = torch.float32, ): super().__init__() self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype) self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype) self.rank = rank self.out_features = out_features self.in_features = in_features nn.init.normal_(self.down.weight, std=1 / rank) nn.init.zeros_(self.up.weight) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: orig_dtype = hidden_states.dtype dtype = self.down.weight.dtype down_hidden_states = self.down(hidden_states.to(dtype)) up_hidden_states = self.up(down_hidden_states) return up_hidden_states.to(orig_dtype) class SelfAttention(nn.Module): def __init__(self, dim: int, num_heads: int, eps: float = 1e-6): super().__init__() self.dim = dim self.num_heads = num_heads self.head_dim = dim // num_heads self.q = nn.Linear(dim, dim) self.k = nn.Linear(dim, dim) self.v = nn.Linear(dim, dim) self.o = nn.Linear(dim, dim) self.norm_q = RMSNorm(dim, eps=eps) self.norm_k = RMSNorm(dim, eps=eps) self.attn = AttentionModule(self.num_heads) self.kv_cache = None self.cond_size = None def init_lora(self, train=False): dim = self.dim self.q_loras = LoRALinearLayer(dim, dim, rank=128) self.k_loras = LoRALinearLayer(dim, dim, rank=128) self.v_loras = LoRALinearLayer(dim, dim, rank=128) requires_grad = train for lora in [self.q_loras, self.k_loras, self.v_loras]: for param in lora.parameters(): param.requires_grad = requires_grad def forward(self, x, freqs): if self.cond_size is not None: if self.kv_cache is None: x_main, x_ip = x[:, : -self.cond_size], x[:, -self.cond_size :] split_point = freqs.shape[0] - self.cond_size freqs_main = freqs[:split_point] freqs_ip = freqs[split_point:] q_main = self.norm_q(self.q(x_main)) k_main = self.norm_k(self.k(x_main)) v_main = self.v(x_main) q_main = rope_apply(q_main, freqs_main, self.num_heads) k_main = rope_apply(k_main, freqs_main, self.num_heads) q_ip = self.norm_q(self.q(x_ip) + self.q_loras(x_ip)) k_ip = self.norm_k(self.k(x_ip) + self.k_loras(x_ip)) v_ip = self.v(x_ip) + self.v_loras(x_ip) q_ip = rope_apply(q_ip, freqs_ip, self.num_heads) k_ip = rope_apply(k_ip, freqs_ip, self.num_heads) self.kv_cache = {"k_ip": k_ip.detach(), "v_ip": v_ip.detach()} full_k = torch.concat([k_main, k_ip], dim=1) full_v = torch.concat([v_main, v_ip], dim=1) cond_out = self.attn(q_ip, k_ip, v_ip) main_out = self.attn(q_main, full_k, full_v) out = torch.concat([main_out, cond_out], dim=1) return self.o(out) else: k_ip = self.kv_cache["k_ip"] v_ip = self.kv_cache["v_ip"] q_main = self.norm_q(self.q(x)) k_main = self.norm_k(self.k(x)) v_main = self.v(x) q_main = rope_apply(q_main, freqs, self.num_heads) k_main = rope_apply(k_main, freqs, self.num_heads) full_k = torch.concat([k_main, k_ip], dim=1) full_v = torch.concat([v_main, v_ip], dim=1) x = self.attn(q_main, full_k, full_v) return self.o(x) else: q = self.norm_q(self.q(x)) k = self.norm_k(self.k(x)) v = self.v(x) q = rope_apply(q, freqs, self.num_heads) k = rope_apply(k, freqs, self.num_heads) x = self.attn(q, k, v) return self.o(x) class CrossAttention(nn.Module): def __init__( self, dim: int, num_heads: int, eps: float = 1e-6, has_image_input: bool = False ): super().__init__() self.dim = dim self.num_heads = num_heads self.head_dim = dim // num_heads self.q = nn.Linear(dim, dim) self.k = nn.Linear(dim, dim) self.v = nn.Linear(dim, dim) self.o = nn.Linear(dim, dim) self.norm_q = RMSNorm(dim, eps=eps) self.norm_k = RMSNorm(dim, eps=eps) self.has_image_input = has_image_input if has_image_input: self.k_img = nn.Linear(dim, dim) self.v_img = nn.Linear(dim, dim) self.norm_k_img = RMSNorm(dim, eps=eps) self.attn = AttentionModule(self.num_heads) def forward(self, x: torch.Tensor, y: torch.Tensor): if self.has_image_input: img = y[:, :257] ctx = y[:, 257:] else: ctx = y q = self.norm_q(self.q(x)) k = self.norm_k(self.k(ctx)) v = self.v(ctx) x = self.attn(q, k, v) if self.has_image_input: k_img = self.norm_k_img(self.k_img(img)) v_img = self.v_img(img) y = flash_attention(q, k_img, v_img, num_heads=self.num_heads) x = x + y return self.o(x) class GateModule(nn.Module): def __init__( self, ): super().__init__() def forward(self, x, gate, residual): return x + gate * residual class DiTBlock(nn.Module): def __init__( self, has_image_input: bool, dim: int, num_heads: int, ffn_dim: int, eps: float = 1e-6, ): super().__init__() self.dim = dim self.num_heads = num_heads self.ffn_dim = ffn_dim self.self_attn = SelfAttention(dim, num_heads, eps) self.cross_attn = CrossAttention( dim, num_heads, eps, has_image_input=has_image_input ) self.norm1 = nn.LayerNorm(dim, eps=eps, elementwise_affine=False) self.norm2 = nn.LayerNorm(dim, eps=eps, elementwise_affine=False) self.norm3 = nn.LayerNorm(dim, eps=eps) self.ffn = nn.Sequential( nn.Linear(dim, ffn_dim), nn.GELU(approximate="tanh"), nn.Linear(ffn_dim, dim), ) self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5) self.gate = GateModule() def forward(self, x, context, t_mod, freqs, x_ip=None, t_mod_ip=None): # msa: multi-head self-attention mlp: multi-layer perceptron shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( self.modulation.to(dtype=t_mod.dtype, device=t_mod.device) + t_mod ).chunk(6, dim=1) input_x = modulate(self.norm1(x), shift_msa, scale_msa) if x_ip is not None: ( shift_msa_ip, scale_msa_ip, gate_msa_ip, shift_mlp_ip, scale_mlp_ip, gate_mlp_ip, ) = ( self.modulation.to(dtype=t_mod_ip.dtype, device=t_mod_ip.device) + t_mod_ip ).chunk(6, dim=1) input_x_ip = modulate( self.norm1(x_ip), shift_msa_ip, scale_msa_ip ) # [1, 1024, 5120] self.self_attn.cond_size = input_x_ip.shape[1] input_x = torch.concat([input_x, input_x_ip], dim=1) self.self_attn.kv_cache = None attn_out = self.self_attn(input_x, freqs) if x_ip is not None: attn_out, attn_out_ip = ( attn_out[:, : -self.self_attn.cond_size], attn_out[:, -self.self_attn.cond_size :], ) x = self.gate(x, gate_msa, attn_out) x = x + self.cross_attn(self.norm3(x), context) input_x = modulate(self.norm2(x), shift_mlp, scale_mlp) x = self.gate(x, gate_mlp, self.ffn(input_x)) if x_ip is not None: x_ip = self.gate(x_ip, gate_msa_ip, attn_out_ip) input_x_ip = modulate(self.norm2(x_ip), shift_mlp_ip, scale_mlp_ip) x_ip = self.gate(x_ip, gate_mlp_ip, self.ffn(input_x_ip)) return x, x_ip class MLP(torch.nn.Module): def __init__(self, in_dim, out_dim, has_pos_emb=False): super().__init__() self.proj = torch.nn.Sequential( nn.LayerNorm(in_dim), nn.Linear(in_dim, in_dim), nn.GELU(), nn.Linear(in_dim, out_dim), nn.LayerNorm(out_dim), ) self.has_pos_emb = has_pos_emb if has_pos_emb: self.emb_pos = torch.nn.Parameter(torch.zeros((1, 514, 1280))) def forward(self, x): if self.has_pos_emb: x = x + self.emb_pos.to(dtype=x.dtype, device=x.device) return self.proj(x) class Head(nn.Module): def __init__( self, dim: int, out_dim: int, patch_size: Tuple[int, int, int], eps: float ): super().__init__() self.dim = dim self.patch_size = patch_size self.norm = nn.LayerNorm(dim, eps=eps, elementwise_affine=False) self.head = nn.Linear(dim, out_dim * math.prod(patch_size)) self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5) def forward(self, x, t_mod): if len(t_mod.shape) == 3: shift, scale = ( self.modulation.unsqueeze(0).to(dtype=t_mod.dtype, device=t_mod.device) + t_mod.unsqueeze(2) ).chunk(2, dim=2) x = self.head(self.norm(x) * (1 + scale.squeeze(2)) + shift.squeeze(2)) else: shift, scale = ( self.modulation.to(dtype=t_mod.dtype, device=t_mod.device) + t_mod ).chunk(2, dim=1) x = self.head(self.norm(x) * (1 + scale) + shift) return x class WanModel(torch.nn.Module): def __init__( self, dim: int, in_dim: int, ffn_dim: int, out_dim: int, text_dim: int, freq_dim: int, eps: float, patch_size: Tuple[int, int, int], num_heads: int, num_layers: int, has_image_input: bool, has_image_pos_emb: bool = False, has_ref_conv: bool = False, add_control_adapter: bool = False, in_dim_control_adapter: int = 24, seperated_timestep: bool = False, require_vae_embedding: bool = True, require_clip_embedding: bool = True, fuse_vae_embedding_in_latents: bool = False, ): super().__init__() self.dim = dim self.freq_dim = freq_dim self.has_image_input = has_image_input self.patch_size = patch_size self.seperated_timestep = seperated_timestep self.require_vae_embedding = require_vae_embedding self.require_clip_embedding = require_clip_embedding self.fuse_vae_embedding_in_latents = fuse_vae_embedding_in_latents self.patch_embedding = nn.Conv3d( in_dim, dim, kernel_size=patch_size, stride=patch_size ) self.text_embedding = nn.Sequential( nn.Linear(text_dim, dim), nn.GELU(approximate="tanh"), nn.Linear(dim, dim) ) self.time_embedding = nn.Sequential( nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim) ) self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6)) self.blocks = nn.ModuleList( [ DiTBlock(has_image_input, dim, num_heads, ffn_dim, eps) for _ in range(num_layers) ] ) self.head = Head(dim, out_dim, patch_size, eps) head_dim = dim // num_heads self.freqs = precompute_freqs_cis_3d(head_dim) if has_image_input: self.img_emb = MLP( 1280, dim, has_pos_emb=has_image_pos_emb ) # clip_feature_dim = 1280 if has_ref_conv: self.ref_conv = nn.Conv2d(16, dim, kernel_size=(2, 2), stride=(2, 2)) self.has_image_pos_emb = has_image_pos_emb self.has_ref_conv = has_ref_conv if add_control_adapter: self.control_adapter = SimpleAdapter( in_dim_control_adapter, dim, kernel_size=patch_size[1:], stride=patch_size[1:], ) else: self.control_adapter = None def patchify( self, x: torch.Tensor, control_camera_latents_input: torch.Tensor = None ): x = self.patch_embedding(x) if ( self.control_adapter is not None and control_camera_latents_input is not None ): y_camera = self.control_adapter(control_camera_latents_input) x = [u + v for u, v in zip(x, y_camera)] x = x[0].unsqueeze(0) grid_size = x.shape[2:] x = rearrange(x, "b c f h w -> b (f h w) c").contiguous() return x, grid_size # x, grid_size: (f, h, w) def unpatchify(self, x: torch.Tensor, grid_size: torch.Tensor): return rearrange( x, "b (f h w) (x y z c) -> b c (f x) (h y) (w z)", f=grid_size[0], h=grid_size[1], w=grid_size[2], x=self.patch_size[0], y=self.patch_size[1], z=self.patch_size[2], ) def forward( self, x: torch.Tensor, timestep: torch.Tensor, context: torch.Tensor, clip_feature: Optional[torch.Tensor] = None, y: Optional[torch.Tensor] = None, use_gradient_checkpointing: bool = False, use_gradient_checkpointing_offload: bool = False, ip_image=None, **kwargs, ): x_ip = None t_mod_ip = None t = self.time_embedding(sinusoidal_embedding_1d(self.freq_dim, timestep)) t_mod = self.time_projection(t).unflatten(1, (6, self.dim)) context = self.text_embedding(context) if ip_image is not None: timestep_ip = torch.zeros_like(timestep) # [B] with 0s t_ip = self.time_embedding( sinusoidal_embedding_1d(self.freq_dim, timestep_ip) ) t_mod_ip = self.time_projection(t_ip).unflatten(1, (6, self.dim)) x, (f, h, w) = self.patchify(x) offset = 1 freqs = ( torch.cat( [ self.freqs[0][offset : f + offset] .view(f, 1, 1, -1) .expand(f, h, w, -1), self.freqs[1][offset : h + offset] .view(1, h, 1, -1) .expand(f, h, w, -1), self.freqs[2][offset : w + offset] .view(1, 1, w, -1) .expand(f, h, w, -1), ], dim=-1, ) .reshape(f * h * w, 1, -1) .to(x.device) ) ############################################################################################ if ip_image is not None: if ip_image.dim() == 6 and ip_image.shape[3] == 1: ip_image = ip_image.squeeze(1) x_ip, (f_ip, h_ip, w_ip) = self.patchify( ip_image ) # x_ip [1, 1024, 5120] [B, N, D] f_ip = 1 h_ip = 32 w_ip = 32 freqs_ip = ( torch.cat( [ self.freqs[0][0] .view(f_ip, 1, 1, -1) .expand(f_ip, h_ip, w_ip, -1), self.freqs[1][h + offset : h + offset + h_ip] .view(1, h_ip, 1, -1) .expand(f_ip, h_ip, w_ip, -1), self.freqs[2][w + offset : w + offset + w_ip] .view(1, 1, w_ip, -1) .expand(f_ip, h_ip, w_ip, -1), ], dim=-1, ) .reshape(f_ip * h_ip * w_ip, 1, -1) .to(x_ip.device) ) freqs = torch.cat([freqs, freqs_ip], dim=0) ############################################################################################ def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward for block in self.blocks: if self.training and use_gradient_checkpointing: if use_gradient_checkpointing_offload: with torch.autograd.graph.save_on_cpu(): x, x_ip = torch.utils.checkpoint.checkpoint( create_custom_forward(block), x, context, t_mod, freqs, x_ip, t_mod_ip, use_reentrant=False, ) else: x, x_ip = torch.utils.checkpoint.checkpoint( create_custom_forward(block), x, context, t_mod, freqs, x_ip, t_mod_ip, use_reentrant=False, ) else: x, x_ip = block(x, context, t_mod, freqs, x_ip, t_mod_ip) x = self.head(x, t) x = self.unpatchify(x, (f, h, w)) return x @staticmethod def state_dict_converter(): return WanModelStateDictConverter() class WanModelStateDictConverter: def __init__(self): pass def from_diffusers(self, state_dict): rename_dict = { "blocks.0.attn1.norm_k.weight": "blocks.0.self_attn.norm_k.weight", "blocks.0.attn1.norm_q.weight": "blocks.0.self_attn.norm_q.weight", "blocks.0.attn1.to_k.bias": "blocks.0.self_attn.k.bias", "blocks.0.attn1.to_k.weight": "blocks.0.self_attn.k.weight", "blocks.0.attn1.to_out.0.bias": "blocks.0.self_attn.o.bias", "blocks.0.attn1.to_out.0.weight": "blocks.0.self_attn.o.weight", "blocks.0.attn1.to_q.bias": "blocks.0.self_attn.q.bias", "blocks.0.attn1.to_q.weight": "blocks.0.self_attn.q.weight", "blocks.0.attn1.to_v.bias": "blocks.0.self_attn.v.bias", "blocks.0.attn1.to_v.weight": "blocks.0.self_attn.v.weight", "blocks.0.attn2.norm_k.weight": "blocks.0.cross_attn.norm_k.weight", "blocks.0.attn2.norm_q.weight": "blocks.0.cross_attn.norm_q.weight", "blocks.0.attn2.to_k.bias": "blocks.0.cross_attn.k.bias", "blocks.0.attn2.to_k.weight": "blocks.0.cross_attn.k.weight", "blocks.0.attn2.to_out.0.bias": "blocks.0.cross_attn.o.bias", "blocks.0.attn2.to_out.0.weight": "blocks.0.cross_attn.o.weight", "blocks.0.attn2.to_q.bias": "blocks.0.cross_attn.q.bias", "blocks.0.attn2.to_q.weight": "blocks.0.cross_attn.q.weight", "blocks.0.attn2.to_v.bias": "blocks.0.cross_attn.v.bias", "blocks.0.attn2.to_v.weight": "blocks.0.cross_attn.v.weight", "blocks.0.ffn.net.0.proj.bias": "blocks.0.ffn.0.bias", "blocks.0.ffn.net.0.proj.weight": "blocks.0.ffn.0.weight", "blocks.0.ffn.net.2.bias": "blocks.0.ffn.2.bias", "blocks.0.ffn.net.2.weight": "blocks.0.ffn.2.weight", "blocks.0.norm2.bias": "blocks.0.norm3.bias", "blocks.0.norm2.weight": "blocks.0.norm3.weight", "blocks.0.scale_shift_table": "blocks.0.modulation", "condition_embedder.text_embedder.linear_1.bias": "text_embedding.0.bias", "condition_embedder.text_embedder.linear_1.weight": "text_embedding.0.weight", "condition_embedder.text_embedder.linear_2.bias": "text_embedding.2.bias", "condition_embedder.text_embedder.linear_2.weight": "text_embedding.2.weight", "condition_embedder.time_embedder.linear_1.bias": "time_embedding.0.bias", "condition_embedder.time_embedder.linear_1.weight": "time_embedding.0.weight", "condition_embedder.time_embedder.linear_2.bias": "time_embedding.2.bias", "condition_embedder.time_embedder.linear_2.weight": "time_embedding.2.weight", "condition_embedder.time_proj.bias": "time_projection.1.bias", "condition_embedder.time_proj.weight": "time_projection.1.weight", "patch_embedding.bias": "patch_embedding.bias", "patch_embedding.weight": "patch_embedding.weight", "scale_shift_table": "head.modulation", "proj_out.bias": "head.head.bias", "proj_out.weight": "head.head.weight", } state_dict_ = {} for name, param in state_dict.items(): if name in rename_dict: state_dict_[rename_dict[name]] = param else: name_ = ".".join(name.split(".")[:1] + ["0"] + name.split(".")[2:]) if name_ in rename_dict: name_ = rename_dict[name_] name_ = ".".join( name_.split(".")[:1] + [name.split(".")[1]] + name_.split(".")[2:] ) state_dict_[name_] = param if hash_state_dict_keys(state_dict) == "cb104773c6c2cb6df4f9529ad5c60d0b": config = { "model_type": "t2v", "patch_size": (1, 2, 2), "text_len": 512, "in_dim": 16, "dim": 5120, "ffn_dim": 13824, "freq_dim": 256, "text_dim": 4096, "out_dim": 16, "num_heads": 40, "num_layers": 40, "window_size": (-1, -1), "qk_norm": True, "cross_attn_norm": True, "eps": 1e-6, } else: config = {} return state_dict_, config def from_civitai(self, state_dict): state_dict = { name: param for name, param in state_dict.items() if not name.startswith("vace") } if hash_state_dict_keys(state_dict) == "9269f8db9040a9d860eaca435be61814": config = { "has_image_input": False, "patch_size": [1, 2, 2], "in_dim": 16, "dim": 1536, "ffn_dim": 8960, "freq_dim": 256, "text_dim": 4096, "out_dim": 16, "num_heads": 12, "num_layers": 30, "eps": 1e-6, } elif hash_state_dict_keys(state_dict) == "aafcfd9672c3a2456dc46e1cb6e52c70": config = { "has_image_input": False, "patch_size": [1, 2, 2], "in_dim": 16, "dim": 5120, "ffn_dim": 13824, "freq_dim": 256, "text_dim": 4096, "out_dim": 16, "num_heads": 40, "num_layers": 40, "eps": 1e-6, } elif hash_state_dict_keys(state_dict) == "6bfcfb3b342cb286ce886889d519a77e": config = { "has_image_input": True, "patch_size": [1, 2, 2], "in_dim": 36, "dim": 5120, "ffn_dim": 13824, "freq_dim": 256, "text_dim": 4096, "out_dim": 16, "num_heads": 40, "num_layers": 40, "eps": 1e-6, } elif hash_state_dict_keys(state_dict) == "6d6ccde6845b95ad9114ab993d917893": config = { "has_image_input": True, "patch_size": [1, 2, 2], "in_dim": 36, "dim": 1536, "ffn_dim": 8960, "freq_dim": 256, "text_dim": 4096, "out_dim": 16, "num_heads": 12, "num_layers": 30, "eps": 1e-6, } elif hash_state_dict_keys(state_dict) == "6bfcfb3b342cb286ce886889d519a77e": config = { "has_image_input": True, "patch_size": [1, 2, 2], "in_dim": 36, "dim": 5120, "ffn_dim": 13824, "freq_dim": 256, "text_dim": 4096, "out_dim": 16, "num_heads": 40, "num_layers": 40, "eps": 1e-6, } elif hash_state_dict_keys(state_dict) == "349723183fc063b2bfc10bb2835cf677": # 1.3B PAI control config = { "has_image_input": True, "patch_size": [1, 2, 2], "in_dim": 48, "dim": 1536, "ffn_dim": 8960, "freq_dim": 256, "text_dim": 4096, "out_dim": 16, "num_heads": 12, "num_layers": 30, "eps": 1e-6, } elif hash_state_dict_keys(state_dict) == "efa44cddf936c70abd0ea28b6cbe946c": # 14B PAI control config = { "has_image_input": True, "patch_size": [1, 2, 2], "in_dim": 48, "dim": 5120, "ffn_dim": 13824, "freq_dim": 256, "text_dim": 4096, "out_dim": 16, "num_heads": 40, "num_layers": 40, "eps": 1e-6, } elif hash_state_dict_keys(state_dict) == "3ef3b1f8e1dab83d5b71fd7b617f859f": config = { "has_image_input": True, "patch_size": [1, 2, 2], "in_dim": 36, "dim": 5120, "ffn_dim": 13824, "freq_dim": 256, "text_dim": 4096, "out_dim": 16, "num_heads": 40, "num_layers": 40, "eps": 1e-6, "has_image_pos_emb": True, } elif hash_state_dict_keys(state_dict) == "70ddad9d3a133785da5ea371aae09504": # 1.3B PAI control v1.1 config = { "has_image_input": True, "patch_size": [1, 2, 2], "in_dim": 48, "dim": 1536, "ffn_dim": 8960, "freq_dim": 256, "text_dim": 4096, "out_dim": 16, "num_heads": 12, "num_layers": 30, "eps": 1e-6, "has_ref_conv": True, } elif hash_state_dict_keys(state_dict) == "26bde73488a92e64cc20b0a7485b9e5b": # 14B PAI control v1.1 config = { "has_image_input": True, "patch_size": [1, 2, 2], "in_dim": 48, "dim": 5120, "ffn_dim": 13824, "freq_dim": 256, "text_dim": 4096, "out_dim": 16, "num_heads": 40, "num_layers": 40, "eps": 1e-6, "has_ref_conv": True, } elif hash_state_dict_keys(state_dict) == "ac6a5aa74f4a0aab6f64eb9a72f19901": # 1.3B PAI control-camera v1.1 config = { "has_image_input": True, "patch_size": [1, 2, 2], "in_dim": 32, "dim": 1536, "ffn_dim": 8960, "freq_dim": 256, "text_dim": 4096, "out_dim": 16, "num_heads": 12, "num_layers": 30, "eps": 1e-6, "has_ref_conv": False, "add_control_adapter": True, "in_dim_control_adapter": 24, } elif hash_state_dict_keys(state_dict) == "b61c605c2adbd23124d152ed28e049ae": # 14B PAI control-camera v1.1 config = { "has_image_input": True, "patch_size": [1, 2, 2], "in_dim": 32, "dim": 5120, "ffn_dim": 13824, "freq_dim": 256, "text_dim": 4096, "out_dim": 16, "num_heads": 40, "num_layers": 40, "eps": 1e-6, "has_ref_conv": False, "add_control_adapter": True, "in_dim_control_adapter": 24, } elif hash_state_dict_keys(state_dict) == "1f5ab7703c6fc803fdded85ff040c316": # Wan-AI/Wan2.2-TI2V-5B config = { "has_image_input": False, "patch_size": [1, 2, 2], "in_dim": 48, "dim": 3072, "ffn_dim": 14336, "freq_dim": 256, "text_dim": 4096, "out_dim": 48, "num_heads": 24, "num_layers": 30, "eps": 1e-6, "seperated_timestep": True, "require_clip_embedding": False, "require_vae_embedding": False, "fuse_vae_embedding_in_latents": True, } elif hash_state_dict_keys(state_dict) == "5b013604280dd715f8457c6ed6d6a626": # Wan-AI/Wan2.2-I2V-A14B config = { "has_image_input": False, "patch_size": [1, 2, 2], "in_dim": 36, "dim": 5120, "ffn_dim": 13824, "freq_dim": 256, "text_dim": 4096, "out_dim": 16, "num_heads": 40, "num_layers": 40, "eps": 1e-6, "require_clip_embedding": False, } else: config = {} return state_dict, config