import torch, warnings, glob, os import numpy as np from PIL import Image from einops import repeat, reduce from typing import Optional, Union from dataclasses import dataclass import numpy as np from PIL import Image from typing import Optional class BasePipeline(torch.nn.Module): def __init__( self, device="cuda", torch_dtype=torch.float16, height_division_factor=64, width_division_factor=64, time_division_factor=None, time_division_remainder=None, ): super().__init__() # The device and torch_dtype is used for the storage of intermediate variables, not models. self.device = device self.torch_dtype = torch_dtype # The following parameters are used for shape check. self.height_division_factor = height_division_factor self.width_division_factor = width_division_factor self.time_division_factor = time_division_factor self.time_division_remainder = time_division_remainder self.vram_management_enabled = False def to(self, *args, **kwargs): device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to( *args, **kwargs ) if device is not None: self.device = device if dtype is not None: self.torch_dtype = dtype super().to(*args, **kwargs) return self def check_resize_height_width(self, height, width, num_frames=None): # Shape check if height % self.height_division_factor != 0: height = ( (height + self.height_division_factor - 1) // self.height_division_factor * self.height_division_factor ) print( f"height % {self.height_division_factor} != 0. We round it up to {height}." ) if width % self.width_division_factor != 0: width = ( (width + self.width_division_factor - 1) // self.width_division_factor * self.width_division_factor ) print( f"width % {self.width_division_factor} != 0. We round it up to {width}." ) if num_frames is None: return height, width else: if num_frames % self.time_division_factor != self.time_division_remainder: num_frames = ( (num_frames + self.time_division_factor - 1) // self.time_division_factor * self.time_division_factor + self.time_division_remainder ) print( f"num_frames % {self.time_division_factor} != {self.time_division_remainder}. We round it up to {num_frames}." ) return height, width, num_frames def preprocess_image( self, image, torch_dtype=None, device=None, pattern="B C H W", min_value=-1, max_value=1, ): # Transform a PIL.Image to torch.Tensor image = torch.Tensor(np.array(image, dtype=np.float32)) image = image.to( dtype=torch_dtype or self.torch_dtype, device=device or self.device ) image = image * ((max_value - min_value) / 255) + min_value image = repeat( image, f"H W C -> {pattern}", **({"B": 1} if "B" in pattern else {}) ) return image def preprocess_video( self, video, torch_dtype=None, device=None, pattern="B C T H W", min_value=-1, max_value=1, ): # Transform a list of PIL.Image to torch.Tensor video = [ self.preprocess_image( image, torch_dtype=torch_dtype, device=device, min_value=min_value, max_value=max_value, ) for image in video ] video = torch.stack(video, dim=pattern.index("T") // 2) return video def vae_output_to_image( self, vae_output, pattern="B C H W", min_value=-1, max_value=1 ): # Transform a torch.Tensor to PIL.Image if pattern != "H W C": vae_output = reduce(vae_output, f"{pattern} -> H W C", reduction="mean") image = ((vae_output - min_value) * (255 / (max_value - min_value))).clip( 0, 255 ) image = image.to(device="cpu", dtype=torch.uint8) image = Image.fromarray(image.numpy()) return image def vae_output_to_video( self, vae_output, pattern="B C T H W", min_value=-1, max_value=1 ): # Transform a torch.Tensor to list of PIL.Image if pattern != "T H W C": vae_output = reduce(vae_output, f"{pattern} -> T H W C", reduction="mean") video = [ self.vae_output_to_image( image, pattern="H W C", min_value=min_value, max_value=max_value ) for image in vae_output ] return video def load_models_to_device(self, model_names=[]): if self.vram_management_enabled: # offload models for name, model in self.named_children(): if name not in model_names: if ( hasattr(model, "vram_management_enabled") and model.vram_management_enabled ): for module in model.modules(): if hasattr(module, "offload"): module.offload() else: model.cpu() torch.cuda.empty_cache() # onload models for name, model in self.named_children(): if name in model_names: if ( hasattr(model, "vram_management_enabled") and model.vram_management_enabled ): for module in model.modules(): if hasattr(module, "onload"): module.onload() else: model.to(self.device) def generate_noise( self, shape, seed=None, rand_device="cpu", rand_torch_dtype=torch.float32, device=None, torch_dtype=None, ): # Initialize Gaussian noise generator = ( None if seed is None else torch.Generator(rand_device).manual_seed(seed) ) noise = torch.randn( shape, generator=generator, device=rand_device, dtype=rand_torch_dtype ) noise = noise.to( dtype=torch_dtype or self.torch_dtype, device=device or self.device ) return noise def enable_cpu_offload(self): warnings.warn( "`enable_cpu_offload` will be deprecated. Please use `enable_vram_management`." ) self.vram_management_enabled = True def get_vram(self): return torch.cuda.mem_get_info(self.device)[1] / (1024**3) def freeze_except(self, model_names): for name, model in self.named_children(): if name in model_names: model.train() model.requires_grad_(True) else: model.eval() model.requires_grad_(False) @dataclass class ModelConfig: path: Union[str, list[str]] = None model_id: str = None origin_file_pattern: Union[str, list[str]] = None download_resource: str = "ModelScope" offload_device: Optional[Union[str, torch.device]] = None offload_dtype: Optional[torch.dtype] = None local_model_path: str = None skip_download: bool = False def download_if_necessary(self, use_usp=False): if self.path is None: # Check model_id and origin_file_pattern if self.model_id is None: raise ValueError( f"""No valid model files. Please use `ModelConfig(path="xxx")` or `ModelConfig(model_id="xxx/yyy", origin_file_pattern="zzz")`.""" ) # Skip if not in rank 0 if use_usp: import torch.distributed as dist skip_download = self.skip_download or dist.get_rank() != 0 else: skip_download = self.skip_download # Check whether the origin path is a folder if self.origin_file_pattern is None or self.origin_file_pattern == "": self.origin_file_pattern = "" allow_file_pattern = None is_folder = True elif isinstance( self.origin_file_pattern, str ) and self.origin_file_pattern.endswith("/"): allow_file_pattern = self.origin_file_pattern + "*" is_folder = True else: allow_file_pattern = self.origin_file_pattern is_folder = False # Download if not skip_download: if self.local_model_path is None: self.local_model_path = "./models" downloaded_files = glob.glob( self.origin_file_pattern, root_dir=os.path.join(self.local_model_path, self.model_id), ) snapshot_download( self.model_id, local_dir=os.path.join(self.local_model_path, self.model_id), allow_file_pattern=allow_file_pattern, ignore_file_pattern=downloaded_files, local_files_only=False, ) # Let rank 1, 2, ... wait for rank 0 if use_usp: import torch.distributed as dist dist.barrier(device_ids=[dist.get_rank()]) # Return downloaded files if is_folder: self.path = os.path.join( self.local_model_path, self.model_id, self.origin_file_pattern ) else: self.path = glob.glob( os.path.join( self.local_model_path, self.model_id, self.origin_file_pattern ) ) if isinstance(self.path, list) and len(self.path) == 1: self.path = self.path[0] class PipelineUnit: def __init__( self, seperate_cfg: bool = False, take_over: bool = False, input_params: tuple[str] = None, input_params_posi: dict[str, str] = None, input_params_nega: dict[str, str] = None, onload_model_names: tuple[str] = None, ): self.seperate_cfg = seperate_cfg self.take_over = take_over self.input_params = input_params self.input_params_posi = input_params_posi self.input_params_nega = input_params_nega self.onload_model_names = onload_model_names def process( self, pipe: BasePipeline, inputs: dict, positive=True, **kwargs ) -> dict: raise NotImplementedError("`process` is not implemented.") class PipelineUnitRunner: def __init__(self): pass def __call__( self, unit: PipelineUnit, pipe: BasePipeline, inputs_shared: dict, inputs_posi: dict, inputs_nega: dict, ) -> tuple[dict, dict]: if unit.take_over: # Let the pipeline unit take over this function. inputs_shared, inputs_posi, inputs_nega = unit.process( pipe, inputs_shared=inputs_shared, inputs_posi=inputs_posi, inputs_nega=inputs_nega, ) elif unit.seperate_cfg: # Positive side processor_inputs = { name: inputs_posi.get(name_) for name, name_ in unit.input_params_posi.items() } if unit.input_params is not None: for name in unit.input_params: processor_inputs[name] = inputs_shared.get(name) processor_outputs = unit.process(pipe, **processor_inputs) inputs_posi.update(processor_outputs) # Negative side if inputs_shared["cfg_scale"] != 1: processor_inputs = { name: inputs_nega.get(name_) for name, name_ in unit.input_params_nega.items() } if unit.input_params is not None: for name in unit.input_params: processor_inputs[name] = inputs_shared.get(name) processor_outputs = unit.process(pipe, **processor_inputs) inputs_nega.update(processor_outputs) else: inputs_nega.update(processor_outputs) else: processor_inputs = { name: inputs_shared.get(name) for name in unit.input_params } processor_outputs = unit.process(pipe, **processor_inputs) inputs_shared.update(processor_outputs) return inputs_shared, inputs_posi, inputs_nega