import os import cv2 import requests import torch import numpy as np import PIL.Image import PIL.ImageOps from insightface.app import FaceAnalysis from facexlib.parsing import init_parsing_model from torchvision.transforms.functional import normalize from typing import Union, Optional def _img2tensor(img: np.ndarray, bgr2rgb: bool = True) -> torch.Tensor: if bgr2rgb: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = img.astype(np.float32) / 255.0 img = np.transpose(img, (2, 0, 1)) return torch.from_numpy(img) def _pad_to_square(img: np.ndarray, pad_color: int = 255) -> np.ndarray: h, w, _ = img.shape if h == w: return img if h > w: pad_size = (h - w) // 2 padded_img = cv2.copyMakeBorder( img, 0, 0, pad_size, h - w - pad_size, cv2.BORDER_CONSTANT, value=[pad_color] * 3, ) else: pad_size = (w - h) // 2 padded_img = cv2.copyMakeBorder( img, pad_size, w - h - pad_size, 0, 0, cv2.BORDER_CONSTANT, value=[pad_color] * 3, ) return padded_img class FaceProcessor: def __init__(self, antelopv2_path=".", device: Optional[torch.device] = None): if device is None: self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") else: self.device = device providers = ( ["CUDAExecutionProvider"] if self.device.type == "cuda" else ["CPUExecutionProvider"] ) self.app = FaceAnalysis( name="antelopev2", root=antelopv2_path, providers=providers ) self.app.prepare(ctx_id=0, det_size=(640, 640)) self.parsing_model = init_parsing_model( model_name="bisenet", device=self.device ) self.parsing_model.eval() print("FaceProcessor initialized successfully.") def process( self, image: Union[str, PIL.Image.Image], resize_to: int = 512, border_thresh: int = 10, face_crop_scale: float = 1.5, extra_input: bool = False, ) -> PIL.Image.Image: if isinstance(image, str): if image.startswith("http://") or image.startswith("https://"): image = PIL.Image.open(requests.get(image, stream=True, timeout=10).raw) elif os.path.isfile(image): image = PIL.Image.open(image) else: raise ValueError( f"Input string is not a valid URL or file path: {image}" ) elif not isinstance(image, PIL.Image.Image): raise TypeError( "Input must be a file path, a URL, or a PIL.Image.Image object." ) image = PIL.ImageOps.exif_transpose(image).convert("RGB") frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) faces = self.app.get(frame) h, w, _ = frame.shape image_to_process = None if not faces: print( "[Warning] No face detected. Using the whole image, padded to square." ) image_to_process = _pad_to_square(frame, pad_color=255) else: largest_face = max( faces, key=lambda f: (f.bbox[2] - f.bbox[0]) * (f.bbox[3] - f.bbox[1]) ) x1, y1, x2, y2 = map(int, largest_face.bbox) is_close_to_border = ( x1 <= border_thresh and y1 <= border_thresh and x2 >= w - border_thresh and y2 >= h - border_thresh ) if is_close_to_border: print( "[Info] Face is close to border, padding original image to square." ) image_to_process = _pad_to_square(frame, pad_color=255) else: cx, cy = (x1 + x2) // 2, (y1 + y2) // 2 side = int(max(x2 - x1, y2 - y1) * face_crop_scale) half = side // 2 left = max(cx - half, 0) top = max(cy - half, 0) right = min(cx + half, w) bottom = min(cy + half, h) cropped_face = frame[top:bottom, left:right] image_to_process = _pad_to_square(cropped_face, pad_color=255) image_resized = cv2.resize( image_to_process, (resize_to, resize_to), interpolation=cv2.INTER_AREA ) face_tensor = ( _img2tensor(image_resized, bgr2rgb=True).unsqueeze(0).to(self.device) ) with torch.no_grad(): normalized_face = normalize(face_tensor, [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) parsing_out = self.parsing_model(normalized_face)[0] parsing_mask = parsing_out.argmax(dim=1, keepdim=True) background_mask_np = (parsing_mask.squeeze().cpu().numpy() == 0).astype( np.uint8 ) white_background = np.ones_like(image_resized, dtype=np.uint8) * 255 mask_3channel = cv2.cvtColor(background_mask_np * 255, cv2.COLOR_GRAY2BGR) result_img_bgr = np.where(mask_3channel == 255, white_background, image_resized) result_img_rgb = cv2.cvtColor(result_img_bgr, cv2.COLOR_BGR2RGB) img_white_bg = PIL.Image.fromarray(result_img_rgb) if extra_input: # 2. Create image with transparent background (new logic) # Create an alpha channel: 255 for foreground (not background), 0 for background alpha_channel = (parsing_mask.squeeze().cpu().numpy() != 0).astype( np.uint8 ) * 255 # Convert the resized BGR image to RGB image_resized_rgb = cv2.cvtColor(image_resized, cv2.COLOR_BGR2RGB) # Stack RGB channels with the new alpha channel rgba_image = np.dstack((image_resized_rgb, alpha_channel)) # Create PIL image from the RGBA numpy array img_transparent_bg = PIL.Image.fromarray(rgba_image, "RGBA") return img_white_bg, img_transparent_bg else: return img_white_bg