File size: 22,751 Bytes
d4757ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
from glob import glob
from enum import Enum
import math
import subprocess

import cv2
import numpy as np
from tqdm import tqdm
import torch
import torch.nn.functional as F

from Wav2Lip import audio
import openvino as ov


device = "cpu"


def bboxlog(x1, y1, x2, y2, axc, ayc, aww, ahh):
    xc, yc, ww, hh = (x2 + x1) / 2, (y2 + y1) / 2, x2 - x1, y2 - y1
    dx, dy = (xc - axc) / aww, (yc - ayc) / ahh
    dw, dh = math.log(ww / aww), math.log(hh / ahh)
    return dx, dy, dw, dh


def bboxloginv(dx, dy, dw, dh, axc, ayc, aww, ahh):
    xc, yc = dx * aww + axc, dy * ahh + ayc
    ww, hh = math.exp(dw) * aww, math.exp(dh) * ahh
    x1, x2, y1, y2 = xc - ww / 2, xc + ww / 2, yc - hh / 2, yc + hh / 2
    return x1, y1, x2, y2


def nms(dets, thresh):
    if 0 == len(dets):
        return []
    x1, y1, x2, y2, scores = dets[:, 0], dets[:, 1], dets[:, 2], dets[:, 3], dets[:, 4]
    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    order = scores.argsort()[::-1]

    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)
        xx1, yy1 = np.maximum(x1[i], x1[order[1:]]), np.maximum(y1[i], y1[order[1:]])
        xx2, yy2 = np.minimum(x2[i], x2[order[1:]]), np.minimum(y2[i], y2[order[1:]])

        w, h = np.maximum(0.0, xx2 - xx1 + 1), np.maximum(0.0, yy2 - yy1 + 1)
        ovr = w * h / (areas[i] + areas[order[1:]] - w * h)

        inds = np.where(ovr <= thresh)[0]
        order = order[inds + 1]

    return keep


def encode(matched, priors, variances):
    """Encode the variances from the priorbox layers into the ground truth boxes
    we have matched (based on jaccard overlap) with the prior boxes.
    Args:
        matched: (tensor) Coords of ground truth for each prior in point-form
            Shape: [num_priors, 4].
        priors: (tensor) Prior boxes in center-offset form
            Shape: [num_priors,4].
        variances: (list[float]) Variances of priorboxes
    Return:
        encoded boxes (tensor), Shape: [num_priors, 4]
    """

    # dist b/t match center and prior's center
    g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2]
    # encode variance
    g_cxcy /= variances[0] * priors[:, 2:]
    # match wh / prior wh
    g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
    g_wh = torch.log(g_wh) / variances[1]
    # return target for smooth_l1_loss
    return torch.cat([g_cxcy, g_wh], 1)  # [num_priors,4]


def decode(loc, priors, variances):
    """Decode locations from predictions using priors to undo
    the encoding we did for offset regression at train time.
    Args:
        loc (tensor): location predictions for loc layers,
            Shape: [num_priors,4]
        priors (tensor): Prior boxes in center-offset form.
            Shape: [num_priors,4].
        variances: (list[float]) Variances of priorboxes
    Return:
        decoded bounding box predictions
    """

    boxes = torch.cat((priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:], priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
    boxes[:, :2] -= boxes[:, 2:] / 2
    boxes[:, 2:] += boxes[:, :2]
    return boxes


def batch_decode(loc, priors, variances):
    """Decode locations from predictions using priors to undo
    the encoding we did for offset regression at train time.
    Args:
        loc (tensor): location predictions for loc layers,
            Shape: [num_priors,4]
        priors (tensor): Prior boxes in center-offset form.
            Shape: [num_priors,4].
        variances: (list[float]) Variances of priorboxes
    Return:
        decoded bounding box predictions
    """

    boxes = torch.cat((priors[:, :, :2] + loc[:, :, :2] * variances[0] * priors[:, :, 2:], priors[:, :, 2:] * torch.exp(loc[:, :, 2:] * variances[1])), 2)
    boxes[:, :, :2] -= boxes[:, :, 2:] / 2
    boxes[:, :, 2:] += boxes[:, :, :2]
    return boxes


def get_smoothened_boxes(boxes, T):
    for i in range(len(boxes)):
        if i + T > len(boxes):
            window = boxes[len(boxes) - T :]
        else:
            window = boxes[i : i + T]
        boxes[i] = np.mean(window, axis=0)
    return boxes


def detect(net, img, device):
    img = img - np.array([104, 117, 123])
    img = img.transpose(2, 0, 1)
    img = img.reshape((1,) + img.shape)

    img = torch.from_numpy(img).float().to(device)
    BB, CC, HH, WW = img.size()

    results = net({"x": img})
    olist = [torch.Tensor(results[i]) for i in range(12)]

    bboxlist = []
    for i in range(len(olist) // 2):
        olist[i * 2] = F.softmax(olist[i * 2], dim=1)
    olist = [oelem.data.cpu() for oelem in olist]
    for i in range(len(olist) // 2):
        ocls, oreg = olist[i * 2], olist[i * 2 + 1]
        FB, FC, FH, FW = ocls.size()  # feature map size
        stride = 2 ** (i + 2)  # 4,8,16,32,64,128
        anchor = stride * 4
        poss = zip(*np.where(ocls[:, 1, :, :] > 0.05))
        for Iindex, hindex, windex in poss:
            axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride
            score = ocls[0, 1, hindex, windex]
            loc = oreg[0, :, hindex, windex].contiguous().view(1, 4)
            priors = torch.Tensor([[axc / 1.0, ayc / 1.0, stride * 4 / 1.0, stride * 4 / 1.0]])
            variances = [0.1, 0.2]
            box = decode(loc, priors, variances)
            x1, y1, x2, y2 = box[0] * 1.0
            # cv2.rectangle(imgshow,(int(x1),int(y1)),(int(x2),int(y2)),(0,0,255),1)
            bboxlist.append([x1, y1, x2, y2, score])
    bboxlist = np.array(bboxlist)
    if 0 == len(bboxlist):
        bboxlist = np.zeros((1, 5))

    return bboxlist


def batch_detect(net, imgs, device):
    imgs = imgs - np.array([104, 117, 123])
    imgs = imgs.transpose(0, 3, 1, 2)

    imgs = torch.from_numpy(imgs).float().to(device)
    BB, CC, HH, WW = imgs.size()

    results = net({"x": imgs.numpy()})
    olist = [torch.Tensor(results[i]) for i in range(12)]

    bboxlist = []
    for i in range(len(olist) // 2):
        olist[i * 2] = F.softmax(olist[i * 2], dim=1)
        # olist[i * 2] = (olist[i * 2], dim=1)
    olist = [oelem.data.cpu() for oelem in olist]
    for i in range(len(olist) // 2):
        ocls, oreg = olist[i * 2], olist[i * 2 + 1]
        FB, FC, FH, FW = ocls.size()  # feature map size
        stride = 2 ** (i + 2)  # 4,8,16,32,64,128
        anchor = stride * 4
        poss = zip(*np.where(ocls[:, 1, :, :] > 0.05))
        for Iindex, hindex, windex in poss:
            axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride
            score = ocls[:, 1, hindex, windex]
            loc = oreg[:, :, hindex, windex].contiguous().view(BB, 1, 4)
            priors = torch.Tensor([[axc / 1.0, ayc / 1.0, stride * 4 / 1.0, stride * 4 / 1.0]]).view(1, 1, 4)
            variances = [0.1, 0.2]
            box = batch_decode(loc, priors, variances)
            box = box[:, 0] * 1.0
            # cv2.rectangle(imgshow,(int(x1),int(y1)),(int(x2),int(y2)),(0,0,255),1)
            bboxlist.append(torch.cat([box, score.unsqueeze(1)], 1).cpu().numpy())
    bboxlist = np.array(bboxlist)
    if 0 == len(bboxlist):
        bboxlist = np.zeros((1, BB, 5))

    return bboxlist


def flip_detect(net, img, device):
    img = cv2.flip(img, 1)
    b = detect(net, img, device)

    bboxlist = np.zeros(b.shape)
    bboxlist[:, 0] = img.shape[1] - b[:, 2]
    bboxlist[:, 1] = b[:, 1]
    bboxlist[:, 2] = img.shape[1] - b[:, 0]
    bboxlist[:, 3] = b[:, 3]
    bboxlist[:, 4] = b[:, 4]
    return bboxlist


def pts_to_bb(pts):
    min_x, min_y = np.min(pts, axis=0)
    max_x, max_y = np.max(pts, axis=0)
    return np.array([min_x, min_y, max_x, max_y])


class OVFaceDetector(object):
    """An abstract class representing a face detector.

    Any other face detection implementation must subclass it. All subclasses
    must implement ``detect_from_image``, that return a list of detected
    bounding boxes. Optionally, for speed considerations detect from path is
    recommended.
    """

    def __init__(self, device, verbose):
        self.device = device
        self.verbose = verbose

    def detect_from_image(self, tensor_or_path):
        """Detects faces in a given image.

        This function detects the faces present in a provided BGR(usually)
        image. The input can be either the image itself or the path to it.

        Arguments:
            tensor_or_path {numpy.ndarray, torch.tensor or string} -- the path
            to an image or the image itself.

        Example::

            >>> path_to_image = 'data/image_01.jpg'
            ...   detected_faces = detect_from_image(path_to_image)
            [A list of bounding boxes (x1, y1, x2, y2)]
            >>> image = cv2.imread(path_to_image)
            ...   detected_faces = detect_from_image(image)
            [A list of bounding boxes (x1, y1, x2, y2)]

        """
        raise NotImplementedError

    def detect_from_directory(self, path, extensions=[".jpg", ".png"], recursive=False, show_progress_bar=True):
        """Detects faces from all the images present in a given directory.

        Arguments:
            path {string} -- a string containing a path that points to the folder containing the images

        Keyword Arguments:
            extensions {list} -- list of string containing the extensions to be
            consider in the following format: ``.extension_name`` (default:
            {['.jpg', '.png']}) recursive {bool} -- option wherever to scan the
            folder recursively (default: {False}) show_progress_bar {bool} --
            display a progressbar (default: {True})

        Example:
        >>> directory = 'data'
        ...   detected_faces = detect_from_directory(directory)
        {A dictionary of [lists containing bounding boxes(x1, y1, x2, y2)]}

        """
        if self.verbose:
            logger = logging.getLogger(__name__)

        if len(extensions) == 0:
            if self.verbose:
                logger.error("Expected at list one extension, but none was received.")
            raise ValueError

        if self.verbose:
            logger.info("Constructing the list of images.")
        additional_pattern = "/**/*" if recursive else "/*"
        files = []
        for extension in extensions:
            files.extend(glob.glob(path + additional_pattern + extension, recursive=recursive))

        if self.verbose:
            logger.info("Finished searching for images. %s images found", len(files))
            logger.info("Preparing to run the detection.")

        predictions = {}
        for image_path in tqdm(files, disable=not show_progress_bar):
            if self.verbose:
                logger.info("Running the face detector on image: %s", image_path)
            predictions[image_path] = self.detect_from_image(image_path)

        if self.verbose:
            logger.info("The detector was successfully run on all %s images", len(files))

        return predictions

    @property
    def reference_scale(self):
        raise NotImplementedError

    @property
    def reference_x_shift(self):
        raise NotImplementedError

    @property
    def reference_y_shift(self):
        raise NotImplementedError

    @staticmethod
    def tensor_or_path_to_ndarray(tensor_or_path, rgb=True):
        """Convert path (represented as a string) or torch.tensor to a numpy.ndarray

        Arguments:
            tensor_or_path {numpy.ndarray, torch.tensor or string} -- path to the image, or the image itself
        """
        if isinstance(tensor_or_path, str):
            return cv2.imread(tensor_or_path) if not rgb else cv2.imread(tensor_or_path)[..., ::-1]
        elif torch.is_tensor(tensor_or_path):
            # Call cpu in case its coming from cuda
            return tensor_or_path.cpu().numpy()[..., ::-1].copy() if not rgb else tensor_or_path.cpu().numpy()
        elif isinstance(tensor_or_path, np.ndarray):
            return tensor_or_path[..., ::-1].copy() if not rgb else tensor_or_path
        else:
            raise TypeError


class OVSFDDetector(OVFaceDetector):
    def __init__(self, device, path_to_detector="models/face_detection.xml", verbose=False):
        super(OVSFDDetector, self).__init__(device, verbose)

        core = ov.Core()
        self.face_detector = core.compile_model(path_to_detector, self.device)

    def detect_from_image(self, tensor_or_path):
        image = self.tensor_or_path_to_ndarray(tensor_or_path)

        bboxlist = detect(self.face_detector, image, device="cpu")
        keep = nms(bboxlist, 0.3)
        bboxlist = bboxlist[keep, :]
        bboxlist = [x for x in bboxlist if x[-1] > 0.5]

        return bboxlist

    def detect_from_batch(self, images):
        bboxlists = batch_detect(self.face_detector, images, device="cpu")
        keeps = [nms(bboxlists[:, i, :], 0.3) for i in range(bboxlists.shape[1])]
        bboxlists = [bboxlists[keep, i, :] for i, keep in enumerate(keeps)]
        bboxlists = [[x for x in bboxlist if x[-1] > 0.5] for bboxlist in bboxlists]

        return bboxlists

    @property
    def reference_scale(self):
        return 195

    @property
    def reference_x_shift(self):
        return 0

    @property
    def reference_y_shift(self):
        return 0


class LandmarksType(Enum):
    """Enum class defining the type of landmarks to detect.

    ``_2D`` - the detected points ``(x,y)`` are detected in a 2D space and follow the visible contour of the face
    ``_2halfD`` - this points represent the projection of the 3D points into 3D
    ``_3D`` - detect the points ``(x,y,z)``` in a 3D space

    """

    _2D = 1
    _2halfD = 2
    _3D = 3


class NetworkSize(Enum):
    # TINY = 1
    # SMALL = 2
    # MEDIUM = 3
    LARGE = 4

    def __new__(cls, value):
        member = object.__new__(cls)
        member._value_ = value
        return member

    def __int__(self):
        return self.value


class OVFaceAlignment:
    def __init__(
        self, landmarks_type, network_size=NetworkSize.LARGE, device="CPU", flip_input=False, verbose=False, path_to_detector="models/face_detection.xml"
    ):
        self.device = device
        self.flip_input = flip_input
        self.landmarks_type = landmarks_type
        self.verbose = verbose

        network_size = int(network_size)

        self.face_detector = OVSFDDetector(device=device, path_to_detector=path_to_detector, verbose=verbose)

    def get_detections_for_batch(self, images):
        images = images[..., ::-1]
        detected_faces = self.face_detector.detect_from_batch(images.copy())
        results = []

        for i, d in enumerate(detected_faces):
            if len(d) == 0:
                results.append(None)
                continue
            d = d[0]
            d = np.clip(d, 0, None)

            x1, y1, x2, y2 = map(int, d[:-1])
            results.append((x1, y1, x2, y2))

        return results


def face_detect_ov(images, device, face_det_batch_size, pads, nosmooth, path_to_detector):
    detector = OVFaceAlignment(LandmarksType._2D, flip_input=False, device=device, path_to_detector=path_to_detector)

    batch_size = face_det_batch_size

    print("face_detect_ov images[0].shape: ", images[0].shape)
    while 1:
        predictions = []
        try:
            for i in tqdm(range(0, len(images), batch_size)):
                predictions.extend(detector.get_detections_for_batch(np.array(images[i : i + batch_size])))
        except RuntimeError:
            if batch_size == 1:
                raise RuntimeError("Image too big to run face detection on GPU. Please use the --resize_factor argument")
            batch_size //= 2
            print("Recovering from OOM error; New batch size: {}".format(batch_size))
            continue
        break

    results = []
    pady1, pady2, padx1, padx2 = pads
    for rect, image in zip(predictions, images):
        if rect is None:
            # check this frame where the face was not detected.
            cv2.imwrite("temp/faulty_frame.jpg", image)
            raise ValueError("Face not detected! Ensure the video contains a face in all the frames.")

        y1 = max(0, rect[1] - pady1)
        y2 = min(image.shape[0], rect[3] + pady2)
        x1 = max(0, rect[0] - padx1)
        x2 = min(image.shape[1], rect[2] + padx2)

        results.append([x1, y1, x2, y2])

    boxes = np.array(results)
    if not nosmooth:
        boxes = get_smoothened_boxes(boxes, T=5)
    results = [[image[y1:y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]

    del detector
    return results


def datagen(frames, mels, box, static, face_det_batch_size, pads, nosmooth, img_size, wav2lip_batch_size, path_to_detector):
    img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []

    if box[0] == -1:
        if not static:
            # BGR2RGB for CNN face detection
            face_det_results = face_detect_ov(frames, "CPU", face_det_batch_size, pads, nosmooth, path_to_detector)
        else:
            face_det_results = face_detect_ov([frames[0]], "CPU", face_det_batch_size, pads, nosmooth, path_to_detector)
    else:
        print("Using the specified bounding box instead of face detection...")
        y1, y2, x1, x2 = box
        face_det_results = [[f[y1:y2, x1:x2], (y1, y2, x1, x2)] for f in frames]

    for i, m in enumerate(mels):
        idx = 0 if static else i % len(frames)
        frame_to_save = frames[idx].copy()
        face, coords = face_det_results[idx].copy()

        face = cv2.resize(face, (img_size, img_size))

        img_batch.append(face)
        mel_batch.append(m)
        frame_batch.append(frame_to_save)
        coords_batch.append(coords)

        if len(img_batch) >= wav2lip_batch_size:
            img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)

            img_masked = img_batch.copy()
            img_masked[:, img_size // 2 :] = 0

            img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.0
            mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])

            yield img_batch, mel_batch, frame_batch, coords_batch
            img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []

    if len(img_batch) > 0:
        img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)

        img_masked = img_batch.copy()
        img_masked[:, img_size // 2 :] = 0

        img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.0
        mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])

        yield img_batch, mel_batch, frame_batch, coords_batch


def ov_inference(
    face_path,
    audio_path,
    face_detection_path="models/face_detection.xml",
    wav2lip_path="models/wav2lip.xml",
    inference_device="CPU",
    wav2lip_batch_size=128,
    outfile="results/result_voice.mp4",
    resize_factor=1,
    rotate=False,
    crop=[0, -1, 0, -1],
    mel_step_size=16,
    box=[-1, -1, -1, -1],
    static=False,
    img_size=96,
    face_det_batch_size=16,
    pads=[0, 10, 0, 0],
    nosmooth=False,
):
    print("Reading video frames...")

    video_stream = cv2.VideoCapture(face_path)
    fps = video_stream.get(cv2.CAP_PROP_FPS)

    full_frames = []
    while 1:
        still_reading, frame = video_stream.read()
        if not still_reading:
            video_stream.release()
            break
        if resize_factor > 1:
            frame = cv2.resize(frame, (frame.shape[1] // resize_factor, frame.shape[0] // resize_factor))

        if rotate:
            frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE)

        y1, y2, x1, x2 = crop
        if x2 == -1:
            x2 = frame.shape[1]
        if y2 == -1:
            y2 = frame.shape[0]

        frame = frame[y1:y2, x1:x2]

        full_frames.append(frame)

    print("Number of frames available for inference: " + str(len(full_frames)))

    core = ov.Core()

    if not audio_path.endswith(".wav"):
        print("Extracting raw audio...")
        command = "ffmpeg -y -i {} -strict -2 {}".format(audio_path, "temp/temp.wav")

        subprocess.call(command, shell=True)
        audio_path = "temp/temp.wav"

    wav = audio.load_wav(audio_path, 16000)
    mel = audio.melspectrogram(wav)
    print(mel.shape)

    if np.isnan(mel.reshape(-1)).sum() > 0:
        raise ValueError("Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again")

    mel_chunks = []
    mel_idx_multiplier = 80.0 / fps
    i = 0
    while 1:
        start_idx = int(i * mel_idx_multiplier)
        if start_idx + mel_step_size > len(mel[0]):
            mel_chunks.append(mel[:, len(mel[0]) - mel_step_size :])
            break
        mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
        i += 1

    print("Length of mel chunks: {}".format(len(mel_chunks)))

    full_frames = full_frames[: len(mel_chunks)]
    batch_size = wav2lip_batch_size
    gen = datagen(full_frames.copy(), mel_chunks, box, static, face_det_batch_size, pads, nosmooth, img_size, wav2lip_batch_size, face_detection_path)
    for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen, total=int(np.ceil(float(len(mel_chunks)) / batch_size)))):
        if i == 0:
            img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
            mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
            compiled_wav2lip_model = core.compile_model(wav2lip_path, inference_device)
            print("Model loaded")
            
            frame_h, frame_w = full_frames[0].shape[:-1]
            out = cv2.VideoWriter("C:/programacionEjercicios/miwav2lipv6/src/Wav2Lip/temp/result.avi", cv2.VideoWriter_fourcc(*"DIVX"), fps, (frame_w, frame_h))
            pred_ov = compiled_wav2lip_model({"audio_sequences": mel_batch.numpy(), "face_sequences": img_batch.numpy()})[0]
        else:
            img_batch = np.transpose(img_batch, (0, 3, 1, 2))
            mel_batch = np.transpose(mel_batch, (0, 3, 1, 2))
            pred_ov = compiled_wav2lip_model({"audio_sequences": mel_batch, "face_sequences": img_batch})[0]

        pred_ov = compiled_wav2lip_model({"audio_sequences": mel_batch, "face_sequences": img_batch})[0]
        pred_ov = pred_ov.transpose(0, 2, 3, 1) * 255.0
        for p, f, c in zip(pred_ov, frames, coords):
            y1, y2, x1, x2 = c
            p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))

            f[y1:y2, x1:x2] = p
            out.write(f)

    out.release()

    command = "ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}".format(audio_path, "C:/programacionEjercicios/miwav2lipv6/src/Wav2Lip/temp/result.avi", outfile)
    subprocess.call(command, shell=True)

    return outfile