File size: 26,749 Bytes
e954acb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6a379f
e954acb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07edd42
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
from pathlib import Path
import gradio as gr
import threading
import queue
import numpy as np
import base64
import tempfile
import os
from dotenv import load_dotenv

from modules.image_analysis import pil_to_base64_dict, analyze_damage_image
from modules.transcription import FireworksTranscription
from modules.incident_processing import process_transcript_description
from modules.claim_processing import generate_claim_report_pdf

load_dotenv()

_FILE_PATH = Path(__file__).parents[1]


class ClaimsAssistantApp:
    def __init__(self):
        self.damage_analysis = None
        self.incident_data = None
        self.live_transcription = ""
        self.transcription_lock = threading.Lock()
        self.is_recording = False
        self.transcription_service = None
        self.audio_queue = queue.Queue()
        self.final_report_pdf = None
        self.claim_reference = ""
        self.pdf_temp_path = None

    @staticmethod
    def format_function_calls_display(incident_data):
        """Format function calls and external data for display"""
        if not incident_data or "function_calls_made" not in incident_data:
            return "", False

        function_calls = incident_data.get("function_calls_made", [])
        external_data = incident_data.get("external_data_retrieved", {})

        if not function_calls:
            return "", False

        display_html = """
        <div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
                    color: white; padding: 20px; border-radius: 12px; margin: 15px 0;">
            <h3 style="margin-top: 0; display: flex; align-items: center;">
                <span style="margin-right: 10px;">πŸ”§</span>
                AI Function Calls Executed
            </h3>
            <p style="margin-bottom: 15px; opacity: 0.9;">
                The AI automatically gathered additional context by calling external functions:
            </p>
        """

        for i, call in enumerate(function_calls, 1):
            status_icon = "βœ…" if call["status"] == "success" else "❌"
            function_name = call["function_name"]

            display_html += f"""
            <div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 8px; margin: 10px 0;">
                <h4 style="margin: 0 0 10px 0;">
                    {status_icon} {i}. {function_name.replace('_', ' ').title()}
                </h4>
                <p style="margin: 5px 0; opacity: 0.8; font-size: 14px;">
                    Status: {call['status'].title()} - {call['message']}
                </p>
            """

            if call["status"] == "success" and function_name in external_data:
                result = external_data[function_name]

                if function_name == "weather_lookup":
                    display_html += f"""
                    <div style="margin: 10px 0; padding: 10px; background: rgba(255,255,255,0.1); border-radius: 5px;">
                        <strong>Weather Conditions:</strong><br/>
                        🌑️ Temperature: {result.get('temperature', 'N/A')}<br/>
                        ☁️ Conditions: {result.get('conditions', 'N/A')}<br/>
                        πŸ‘οΈ Visibility: {result.get('visibility', 'N/A')}<br/>
                        🌧️ Precipitation: {result.get('precipitation', 'N/A')}
                    </div>
                    """

                elif function_name == "driver_record_check":
                    display_html += f"""
                    <div style="margin: 10px 0; padding: 10px; background: rgba(255,255,255,0.1); border-radius: 5px;">
                        <strong>Driver Record:</strong><br/>
                        πŸ†” License: {result.get('license_status', 'N/A')}<br/>
                        πŸ›‘οΈ Insurance: {result.get('insurance_status', 'N/A')}<br/>
                        πŸ“Š Risk Level: {result.get('risk_assessment', 'N/A')}<br/>
                        πŸ“ Previous Claims: {result.get('previous_claims', 0)}
                    </div>
                    """

            display_html += "</div>"

        display_html += """
            <div style="margin-top: 15px; padding: 10px; background: rgba(255,255,255,0.1); border-radius: 5px;">
                <small style="opacity: 0.8;">
                    πŸ’‘ This additional context helps provide more accurate claim assessment and risk evaluation.
                </small>
            </div>
        </div>
        """

        return display_html, True

    def create_interface(self):
        """Create the main Gradio interface"""

        with gr.Blocks(title="Scout Claims", theme=gr.themes.Soft()) as demo:
            # Header
            with gr.Row():
                with gr.Column():
                    gr.Markdown("# πŸš— Scout | AI Claims Assistant πŸš—")
                    gr.Markdown(
                        "*Automated Insurance Claims Processing with AI Function Calling*"
                    )

            # Sidebar (API Key)
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("### Powered by:")
                    gr.Image(
                        value=str(_FILE_PATH / "assets/fireworks_logo.png"),
                        height=30,
                        width=100,
                        show_label=False,
                        show_download_button=False,
                        container=False,
                        show_fullscreen_button=False,
                        show_share_button=False,
                    )

                    gr.Markdown("## βš™οΈ Configuration")

                    val = os.getenv("FIREWORKS_API_KEY", "")

                    api_key = gr.Textbox(
                        label="Fireworks AI API Key",
                        type="password",
                        placeholder="Enter your Fireworks AI API key",
                        value=val,
                        info="Required for AI processing",
                    )

                    gr.Markdown("## πŸ“‹ Instructions")
                    gr.Markdown(
                        """
                    **Step 1:** Upload car damage photo(s) \n
                    **Step 2:** Use microphone to describe incident \n
                    **Step 3:** Generate and review claim report \n
                    """
                    )

                # Main Content Area
                with gr.Column(scale=3):
                    # Step 1: Upload Image
                    gr.Markdown("## πŸ“· Step 1: Upload Damage Photos πŸ“·")
                    with gr.Row():
                        image_input = gr.Image(
                            label="Car Damage Photo", type="pil", height=300
                        )

                        with gr.Column():
                            analyze_btn = gr.Button(
                                "πŸ” Analyze Damage", variant="primary"
                            )
                            damage_status = gr.Textbox(
                                label="Analysis Status",
                                value="Ready to analyze damage",
                                interactive=False,
                                lines=2,
                            )

                    # Damage Analysis Results
                    damage_results = gr.JSON(
                        label="Damage Analysis Results", visible=False
                    )

                    gr.Markdown("---")

                    # Step 2: Incident Description with Live Streaming
                    gr.Markdown("## 🎀 Step 2: Describe the Incident 🎀")

                    with gr.Accordion(
                        "πŸ’‘ What to Include in Your Recording", open=True
                    ):
                        gr.Markdown(
                            """
                        **Please describe the following when you record:**

                        πŸ“… **When & Where:**
                        - Date and time of the accident
                        - Street address or intersection

                        πŸ‘₯ **Who Was Involved:**
                        - Other driver's name and contact info
                        - Vehicle details (make, model, color, license plate)
                        - Any witnesses

                        πŸš— **What Happened:**
                        - How the accident occurred
                        - Who was at fault and why
                        - Weather and road conditions

                        πŸ₯ **Injuries & Damage:**
                        - Anyone hurt? How seriously?
                        - How severe is the vehicle damage?

                        """
                        )

                    with gr.Row():
                        # Direct audio input - no toggle button needed
                        with gr.Column():
                            audio_input = gr.Audio(
                                label="🎡 Record Incident Description",
                                sources=["microphone"],
                                streaming=True,
                                format="wav",
                                show_download_button=False,
                            )
                            transcription_display = gr.Textbox(
                                label="Live Transcription",
                                placeholder="Click the 'Record' button above to start recording...",
                                lines=8,
                                interactive=False,
                                autoscroll=True,
                            )

                    process_incident_btn = gr.Button(
                        "πŸ“ Process Incident", variant="primary"
                    )

                    incident_status = gr.Textbox(
                        label="Processing Status",
                        value="Record audio first to process incident",
                        interactive=False,
                        lines=2,
                    )

                    # NEW: Function calls display
                    function_calls_display = gr.HTML(
                        label="AI Function Calls", visible=False
                    )

                    # Incident Processing Results
                    incident_results = gr.JSON(
                        label="Incident Processing Results", visible=False
                    )

                    gr.Markdown("---")

                    # Step 3: Generate Claim Report
                    gr.Markdown("## πŸ“„ Step 3: Generate Claim Report πŸ“„")

                    generate_report_btn = gr.Button(
                        "πŸš€ Generate Claim Report", variant="primary", size="lg"
                    )

                    report_status = gr.Textbox(
                        label="Report Generation Status",
                        value="Complete steps 1 and 2 to generate report",
                        interactive=False,
                        lines=2,
                    )

                    # Final Report Display - Updated for PDF
                    with gr.Accordion(
                        "πŸ“‹ Generated Claim Report (PDF)", open=False
                    ) as report_accordion:
                        # PDF Viewer using HTML iframe
                        pdf_viewer = gr.HTML(
                            value="<p style='text-align: center; color: gray;'>PDF report will appear here after generation</p>",
                            label="Claim Report PDF",
                        )

                        with gr.Row():
                            download_btn = gr.DownloadButton(
                                "πŸ’Ύ Download PDF Report", visible=False
                            )
                            submit_btn = gr.Button(
                                "βœ… Submit Claim", variant="stop", visible=False
                            )

            # Event Handlers
            def handle_damage_analysis(image, api_key):
                if image is None:
                    return (
                        "❌ Please upload an image first",
                        gr.update(visible=False),
                    )

                if not api_key.strip():
                    return (
                        "❌ Please enter your Fireworks AI API key first",
                        gr.update(visible=False),
                    )

                try:
                    # Update status to show processing
                    yield (
                        "πŸ”„ Analyzing damage... Please wait",
                        gr.update(visible=False),
                    )

                    image_dict = pil_to_base64_dict(image)
                    self.damage_analysis = analyze_damage_image(
                        image=image_dict, api_key=api_key
                    )

                    yield (
                        "βœ… Damage analysis completed successfully!",
                        gr.update(value=self.damage_analysis, visible=True),
                    )
                    return None

                except Exception as e:
                    yield (
                        f"❌ Error analyzing damage: {str(e)}",
                        gr.update(visible=False),
                    )
                    return None

            def live_transcription_callback(text):
                """Callback for live transcription updates"""
                with self.transcription_lock:
                    self.live_transcription = text

            def initialize_transcription_service(api_key):
                """Initialize transcription service when audio starts"""
                if not api_key.strip():
                    return False

                if not self.transcription_service:
                    self.transcription_service = FireworksTranscription(api_key)
                    self.transcription_service.set_callback(live_transcription_callback)

                if not self.is_recording:
                    self.is_recording = True
                    self.live_transcription = ""
                    return self.transcription_service._connect()
                return True

            def process_audio_stream(audio_tuple, api_key):
                """Process incoming audio stream for live transcription"""
                if not audio_tuple:
                    with self.transcription_lock:
                        return self.live_transcription

                # Initialize transcription service if needed
                if not self.is_recording:
                    if not initialize_transcription_service(api_key):
                        return "❌ Failed to initialize transcription service. Check your API key."

                try:
                    sample_rate, audio_data = audio_tuple

                    # Convert audio data to proper format
                    if not isinstance(audio_data, np.ndarray):
                        audio_data = np.array(audio_data, dtype=np.float32)

                    if audio_data.dtype != np.float32:
                        if audio_data.dtype == np.int16:
                            audio_data = audio_data.astype(np.float32) / 32768.0
                        elif audio_data.dtype == np.int32:
                            audio_data = audio_data.astype(np.float32) / 2147483648.0
                        else:
                            audio_data = audio_data.astype(np.float32)

                    # Skip if audio is too quiet
                    if np.max(np.abs(audio_data)) < 0.01:
                        with self.transcription_lock:
                            return self.live_transcription

                    # Convert to mono if stereo
                    if len(audio_data.shape) > 1:
                        audio_data = np.mean(audio_data, axis=1)

                    # Resample to 16kHz if needed
                    if sample_rate != 16000:
                        ratio = 16000 / sample_rate
                        new_length = int(len(audio_data) * ratio)
                        if new_length > 0:
                            audio_data = np.interp(
                                np.linspace(0, len(audio_data) - 1, new_length),
                                np.arange(len(audio_data)),
                                audio_data,
                            )

                    # Convert to bytes and send to transcription service
                    audio_bytes = (audio_data * 32767).astype(np.int16).tobytes()

                    if (
                        self.transcription_service
                        and self.transcription_service.is_connected
                    ):
                        self.transcription_service._send_audio_chunk(audio_bytes)

                except Exception as e:
                    print(f"Error processing audio stream: {e}")

                # Return current transcription
                with self.transcription_lock:
                    return self.live_transcription

            def handle_incident_processing(api_key):
                """Process the recorded transcription into structured incident data with function calling"""
                if not self.live_transcription.strip():
                    return (
                        "❌ No transcription available. Please record audio first.",
                        gr.update(visible=False),
                        gr.update(visible=False),
                    )

                if not api_key.strip():
                    return (
                        "❌ Please enter your Fireworks AI API key first",
                        gr.update(visible=False),
                        gr.update(visible=False),
                    )

                try:
                    # Update status
                    yield (
                        "πŸ”„ Processing incident data ... Please wait",
                        gr.update(visible=False),
                        gr.update(visible=False),
                    )

                    # Use enhanced Fireworks processing with function calling
                    incident_analysis = process_transcript_description(
                        transcript=self.live_transcription, api_key=api_key
                    )

                    # Convert Pydantic model to dict for JSON display
                    self.incident_data = incident_analysis.model_dump()

                    # Format function calls for display
                    function_calls_html, show_calls = (
                        self.format_function_calls_display(self.incident_data)
                    )

                    # Update status message based on function calls
                    if show_calls:
                        status_message = f"βœ… Incident processing completed with {len(self.incident_data.get('function_calls_made', []))} AI function calls!"
                    else:
                        status_message = (
                            "βœ… Incident processing completed successfully!"
                        )

                    yield (
                        status_message,
                        gr.update(value=function_calls_html, visible=show_calls),
                        gr.update(value=self.incident_data, visible=True),
                    )
                    return None

                except Exception as e:
                    yield (
                        f"❌ Error processing incident: {str(e)}",
                        gr.update(visible=False),
                        gr.update(visible=False),
                    )
                    return None

            def handle_report_generation(api_key):
                """Generate comprehensive claim report as PDF using AI"""
                if not self.damage_analysis or not self.incident_data:
                    return (
                        "❌ Please complete damage analysis and incident processing first",
                        "<p style='text-align: center; color: gray;'>PDF report will appear here after generation</p>",
                        gr.update(visible=False),
                        gr.update(visible=False),
                        gr.update(open=False),
                    )

                if not api_key.strip():
                    return (
                        "❌ Please enter your Fireworks AI API key first",
                        "<p style='text-align: center; color: gray;'>PDF report will appear here after generation</p>",
                        gr.update(visible=False),
                        gr.update(visible=False),
                        gr.update(open=False),
                    )

                try:
                    # Show processing status
                    yield (
                        "πŸ”„ Generating comprehensive PDF claim report... Please wait",
                        "<p style='text-align: center; color: gray;'>PDF report will appear here after generation</p>",
                        gr.update(visible=False),
                        gr.update(visible=False),
                        gr.update(open=False),
                    )

                    # Generate the PDF report
                    self.final_report_pdf = generate_claim_report_pdf(
                        damage_analysis=self.damage_analysis,
                        incident_data=self.incident_data,
                    )

                    # Extract claim reference for download filename
                    from datetime import datetime

                    timestamp = datetime.now()
                    self.claim_reference = f"CLM-{timestamp.strftime('%Y%m%d')}-{timestamp.strftime('%H%M%S')}"

                    # Save PDF to temporary file for viewing and downloading
                    if self.pdf_temp_path and os.path.exists(self.pdf_temp_path):
                        os.remove(self.pdf_temp_path)

                    temp_dir = tempfile.gettempdir()
                    self.pdf_temp_path = os.path.join(
                        temp_dir, f"{self.claim_reference}.pdf"
                    )

                    with open(self.pdf_temp_path, "wb") as f:
                        f.write(self.final_report_pdf)

                    # Create PDF viewer HTML
                    pdf_base64 = base64.b64encode(self.final_report_pdf).decode("utf-8")
                    pdf_viewer_html = f"""
                    <div style="text-align: center; margin: 20px 0;">
                        <h3 style="color: #2563eb;">πŸ“‹ Insurance Claim Report - {self.claim_reference}</h3>
                        <iframe
                            src="data:application/pdf;base64,{pdf_base64}"
                            width="100%"
                            height="800px"
                            style="border: 2px solid #e5e7eb; border-radius: 8px; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);">
                            <p>Your browser does not support PDF viewing.
                            <a href="data:application/pdf;base64,{pdf_base64}" download="{self.claim_reference}.pdf">
                                Click here to download the PDF
                            </a></p>
                        </iframe>
                        <p style="margin-top: 15px; color: #6b7280; font-size: 14px;">
                            πŸ“„ Professional PDF report generated successfully! Use the download button below to save.
                        </p>
                    </div>
                    """

                    yield (
                        "βœ… Professional PDF claim report generated successfully!",
                        pdf_viewer_html,
                        gr.update(visible=True, value=self.pdf_temp_path),
                        gr.update(visible=True),
                        gr.update(open=True),
                    )
                    return None

                except Exception as e:
                    yield (
                        f"❌ Error generating PDF report: {str(e)}",
                        "<p style='text-align: center; color: red;'>Error generating PDF report</p>",
                        gr.update(visible=False),
                        gr.update(visible=False),
                        gr.update(open=False),
                    )
                    return None

            def handle_claim_submission():
                """Handle final claim submission"""
                if not self.final_report_pdf:
                    return "❌ No report available to submit"

                return f"πŸŽ‰ Claim submitted successfully! Reference: {self.claim_reference}"

            def cleanup_temp_files():
                """Clean up temporary PDF files"""
                if self.pdf_temp_path and os.path.exists(self.pdf_temp_path):
                    try:
                        os.remove(self.pdf_temp_path)
                    except Exception as e:
                        print(f"Error deleting temporary PDF file: {e}")
                        pass

            # Wire up the events
            analyze_btn.click(
                fn=handle_damage_analysis,
                inputs=[image_input, api_key],
                outputs=[damage_status, damage_results],
            )

            # Handle streaming audio for live transcription
            audio_input.stream(
                fn=process_audio_stream,
                inputs=[audio_input, api_key],
                outputs=[transcription_display],
                show_progress="hidden",
            )

            # Updated to include function calls display
            process_incident_btn.click(
                fn=handle_incident_processing,
                inputs=[api_key],
                outputs=[incident_status, function_calls_display, incident_results],
            )

            generate_report_btn.click(
                fn=handle_report_generation,
                inputs=[api_key],
                outputs=[
                    report_status,
                    pdf_viewer,
                    download_btn,
                    submit_btn,
                    report_accordion,
                ],
            )

            submit_btn.click(fn=handle_claim_submission, outputs=[report_status])

            # Clean up on app close
            demo.load(lambda: None)

        return demo


def create_claims_app():
    """Factory function to create the claims assistant app"""
    app = ClaimsAssistantApp()
    return app.create_interface()


# Create and launch the demo
if __name__ == "__main__":
    print("Starting AI Claims Assistant Demo with Function Calling")
    demo = create_claims_app()
    demo.launch(share=True)