Spaces:
Running
on
L4
Running
on
L4
Upload folder using huggingface_hub
Browse files- app.py +1 -1
- fish_speech/content_sequence.py +8 -3
- fish_speech/models/text2semantic/inference.py +162 -170
- fish_speech/models/text2semantic/llama.py +81 -44
app.py
CHANGED
@@ -313,4 +313,4 @@ if __name__ == "__main__":
|
|
313 |
inference_fct = get_inference_wrapper(inference_engine)
|
314 |
|
315 |
app = build_app(inference_fct, args.theme)
|
316 |
-
app.queue(api_open=True).launch(show_error=True, show_api=True)
|
|
|
313 |
inference_fct = get_inference_wrapper(inference_engine)
|
314 |
|
315 |
app = build_app(inference_fct, args.theme)
|
316 |
+
app.queue(api_open=True).launch(show_error=True, show_api=True, server_name="0.0.0.0", server_port=18888)
|
fish_speech/content_sequence.py
CHANGED
@@ -271,7 +271,7 @@ class ContentSequence:
|
|
271 |
self: "ContentSequence",
|
272 |
tokenizer: FishTokenizer,
|
273 |
num_codebooks: int,
|
274 |
-
) -> torch.Tensor:
|
275 |
encoded = self.encode(tokenizer, add_shift=False)
|
276 |
tokens = encoded.tokens
|
277 |
values = torch.zeros((num_codebooks + 1, len(tokens)), dtype=torch.int)
|
@@ -280,8 +280,9 @@ class ContentSequence:
|
|
280 |
if (encoded.vq_parts is None or len(encoded.vq_parts) == 0) and (
|
281 |
encoded.audio_parts is None or len(encoded.audio_parts) == 0
|
282 |
):
|
283 |
-
return values
|
284 |
|
|
|
285 |
if encoded.vq_parts is not None and len(encoded.vq_parts) > 0:
|
286 |
vq_parts = encoded.vq_parts
|
287 |
vq_parts = torch.cat(vq_parts, dim=1)
|
@@ -290,7 +291,11 @@ class ContentSequence:
|
|
290 |
)
|
291 |
values[1:, encoded.vq_mask_tokens] = vq_parts
|
292 |
|
293 |
-
|
|
|
|
|
|
|
|
|
294 |
|
295 |
def visualize(
|
296 |
self: "ContentSequence",
|
|
|
271 |
self: "ContentSequence",
|
272 |
tokenizer: FishTokenizer,
|
273 |
num_codebooks: int,
|
274 |
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
275 |
encoded = self.encode(tokenizer, add_shift=False)
|
276 |
tokens = encoded.tokens
|
277 |
values = torch.zeros((num_codebooks + 1, len(tokens)), dtype=torch.int)
|
|
|
280 |
if (encoded.vq_parts is None or len(encoded.vq_parts) == 0) and (
|
281 |
encoded.audio_parts is None or len(encoded.audio_parts) == 0
|
282 |
):
|
283 |
+
return values, None, None
|
284 |
|
285 |
+
audio_parts = audio_masks = None
|
286 |
if encoded.vq_parts is not None and len(encoded.vq_parts) > 0:
|
287 |
vq_parts = encoded.vq_parts
|
288 |
vq_parts = torch.cat(vq_parts, dim=1)
|
|
|
291 |
)
|
292 |
values[1:, encoded.vq_mask_tokens] = vq_parts
|
293 |
|
294 |
+
if encoded.audio_parts is not None and len(encoded.audio_parts) > 0:
|
295 |
+
audio_parts = torch.cat(encoded.audio_parts, dim=0)
|
296 |
+
audio_masks = encoded.audio_masks[None, :]
|
297 |
+
|
298 |
+
return values, audio_masks, audio_parts
|
299 |
|
300 |
def visualize(
|
301 |
self: "ContentSequence",
|
fish_speech/models/text2semantic/inference.py
CHANGED
@@ -2,6 +2,7 @@ import os
|
|
2 |
import queue
|
3 |
import threading
|
4 |
import time
|
|
|
5 |
from contextlib import nullcontext
|
6 |
from dataclasses import dataclass
|
7 |
from pathlib import Path
|
@@ -35,6 +36,7 @@ if hasattr(torch._inductor.config, "fx_graph_cache"):
|
|
35 |
from torch.nn.attention import SDPBackend, sdpa_kernel
|
36 |
|
37 |
from fish_speech.models.text2semantic.llama import (
|
|
|
38 |
DualARTransformer,
|
39 |
NaiveTransformer,
|
40 |
)
|
@@ -49,19 +51,19 @@ def multinomial_sample_one_no_sync(
|
|
49 |
|
50 |
def logits_to_probs(
|
51 |
logits,
|
|
|
|
|
|
|
52 |
previous_tokens: Optional[torch.Tensor] = None,
|
53 |
-
temperature: torch.Tensor = 1.0,
|
54 |
-
top_p: torch.Tensor = 1.0,
|
55 |
-
repetition_penalty: torch.Tensor = 1.0,
|
56 |
) -> torch.Tensor:
|
57 |
# Apply repetition penalty
|
58 |
if previous_tokens is not None:
|
59 |
previous_tokens = previous_tokens.long()
|
60 |
-
score = torch.gather(logits, dim
|
61 |
score = torch.where(
|
62 |
score < 0, score * repetition_penalty, score / repetition_penalty
|
63 |
)
|
64 |
-
logits.scatter_(dim
|
65 |
|
66 |
# Apply top-p sampling
|
67 |
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
@@ -69,11 +71,10 @@ def logits_to_probs(
|
|
69 |
sorted_indices_to_remove = cum_probs > top_p
|
70 |
sorted_indices_to_remove[0] = False # keep at least one option
|
71 |
indices_to_remove = sorted_indices_to_remove.scatter(
|
72 |
-
dim
|
73 |
)
|
74 |
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
75 |
-
|
76 |
-
logits = logits / max(temperature, 1e-5)
|
77 |
|
78 |
probs = torch.nn.functional.softmax(logits, dim=-1)
|
79 |
return probs
|
@@ -81,11 +82,17 @@ def logits_to_probs(
|
|
81 |
|
82 |
def sample(
|
83 |
logits,
|
|
|
|
|
|
|
84 |
previous_tokens: Optional[torch.Tensor] = None,
|
85 |
-
**sampling_kwargs,
|
86 |
) -> Tuple[torch.Tensor, torch.Tensor]:
|
87 |
probs = logits_to_probs(
|
88 |
-
logits=logits[0, -1],
|
|
|
|
|
|
|
|
|
89 |
)
|
90 |
idx_next = multinomial_sample_one_no_sync(probs)
|
91 |
return idx_next, probs
|
@@ -95,40 +102,35 @@ def decode_one_token_ar(
|
|
95 |
model: DualARTransformer,
|
96 |
x: torch.Tensor,
|
97 |
input_pos: torch.Tensor,
|
|
|
|
|
|
|
|
|
|
|
98 |
previous_tokens: torch.Tensor = None,
|
99 |
-
**sampling_kwargs,
|
100 |
) -> torch.Tensor:
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
previous_tokens: Previous tokens for repetition penalty (1, num_codebooks+1, history_seq_len)
|
111 |
-
audio_masks/audio_parts: Audio conditioning tensors (num_codebooks, seq_len)
|
112 |
-
|
113 |
-
Returns:
|
114 |
-
Generated tokens tensor (num_codebooks+1, 1) - one token per codebook
|
115 |
-
"""
|
116 |
-
x = model.forward_generate(x, input_pos)
|
117 |
-
|
118 |
-
sampling_kwargs_main = sampling_kwargs.copy()
|
119 |
|
120 |
codebooks = [
|
121 |
sample(
|
122 |
-
|
|
|
|
|
|
|
123 |
previous_tokens=(
|
124 |
-
previous_tokens[0] if previous_tokens is not None else None
|
125 |
-
),
|
126 |
-
**sampling_kwargs_main,
|
127 |
)[0]
|
128 |
]
|
129 |
|
130 |
-
hidden_states = x.hidden_states
|
131 |
-
|
132 |
# Cleanup the cache
|
133 |
for layer in model.fast_layers:
|
134 |
layer.attention.kv_cache.k_cache.fill_(0)
|
@@ -146,22 +148,27 @@ def decode_one_token_ar(
|
|
146 |
[codebook_idx], device=hidden_states.device, dtype=torch.long
|
147 |
)
|
148 |
logits = model.forward_generate_fast(hidden_states, input_pos)
|
149 |
-
|
|
|
|
|
|
|
150 |
a = sample(
|
151 |
-
|
|
|
|
|
|
|
152 |
previous_tokens=(
|
153 |
previous_tokens[codebook_idx + 1]
|
154 |
if previous_tokens is not None
|
155 |
else None
|
156 |
),
|
157 |
-
**sampling_kwargs,
|
158 |
)[0]
|
|
|
159 |
hidden_states = model.fast_embeddings(a)
|
160 |
codebooks.append(a)
|
161 |
|
162 |
-
codebooks = torch.stack(codebooks, dim=
|
163 |
-
|
164 |
-
return codebooks
|
165 |
|
166 |
|
167 |
def decode_n_tokens(
|
@@ -169,24 +176,13 @@ def decode_n_tokens(
|
|
169 |
cur_token: torch.Tensor,
|
170 |
input_pos: torch.Tensor,
|
171 |
num_new_tokens: int,
|
|
|
|
|
|
|
|
|
|
|
172 |
decode_one_token=decode_one_token_ar,
|
173 |
-
**sampling_kwargs,
|
174 |
):
|
175 |
-
"""
|
176 |
-
Generate n tokens iteratively using the model.
|
177 |
-
|
178 |
-
Args:
|
179 |
-
model: The transformer model
|
180 |
-
cur_token: Current token tensor of shape (1, num_codebooks+1, seq_len)
|
181 |
-
input_pos: Current input position tensor
|
182 |
-
num_new_tokens: Number of new tokens to generate
|
183 |
-
semantic_ids: List of semantic token IDs
|
184 |
-
decode_one_token: Function to decode one token
|
185 |
-
**sampling_kwargs: Additional sampling parameters
|
186 |
-
|
187 |
-
Returns:
|
188 |
-
Generated tokens tensor of shape (num_codebooks+1, generated_len)
|
189 |
-
"""
|
190 |
previous_tokens = torch.zeros(
|
191 |
(model.config.num_codebooks + 1, model.config.max_seq_len),
|
192 |
dtype=torch.int,
|
@@ -201,13 +197,19 @@ def decode_n_tokens(
|
|
201 |
else:
|
202 |
window = previous_tokens[:, i - win_size : i]
|
203 |
|
204 |
-
with sdpa_kernel(
|
|
|
|
|
205 |
next_token = decode_one_token(
|
206 |
model=model,
|
207 |
x=cur_token,
|
208 |
input_pos=input_pos,
|
209 |
previous_tokens=window,
|
210 |
-
|
|
|
|
|
|
|
|
|
211 |
).clone()
|
212 |
|
213 |
input_pos += 1
|
@@ -226,33 +228,31 @@ def decode_n_tokens(
|
|
226 |
@torch.inference_mode()
|
227 |
def generate(
|
228 |
*,
|
229 |
-
model:
|
230 |
prompt: torch.Tensor,
|
231 |
max_new_tokens: int,
|
|
|
|
|
232 |
decode_one_token=decode_one_token_ar,
|
|
|
233 |
**sampling_kwargs,
|
234 |
-
)
|
235 |
"""
|
236 |
-
|
237 |
-
|
238 |
-
Args:
|
239 |
-
model: The transformer model for generation
|
240 |
-
prompt: Input token tensor of shape (num_codebooks+1, seq_len)
|
241 |
-
max_new_tokens: Maximum number of new tokens to generate
|
242 |
-
decode_one_token: Function to decode one token at a time
|
243 |
-
**sampling_kwargs: Additional sampling parameters (temperature, top_p, repetition_penalty)
|
244 |
-
|
245 |
-
Returns:
|
246 |
-
Generated sequence tensor of shape (num_codebooks+1, total_seq_len)
|
247 |
-
where total_seq_len = original_seq_len + generated_tokens_len
|
248 |
"""
|
249 |
|
|
|
250 |
T = prompt.size(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
if max_new_tokens:
|
253 |
if T + max_new_tokens > model.config.max_seq_len:
|
254 |
max_new_tokens = model.config.max_seq_len - T
|
255 |
-
logger.info(f"Truncating max_new_tokens to {max_new_tokens}")
|
256 |
|
257 |
T_new = T + max_new_tokens
|
258 |
else:
|
@@ -260,23 +260,40 @@ def generate(
|
|
260 |
max_new_tokens = T_new - T
|
261 |
|
262 |
device, dtype = prompt.device, prompt.dtype
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
codebook_dim = 1 + model.config.num_codebooks
|
|
|
265 |
empty = torch.empty(
|
266 |
(codebook_dim, model.config.max_seq_len), dtype=dtype, device=device
|
267 |
)
|
268 |
empty[:, :T] = prompt
|
269 |
seq = empty
|
270 |
-
input_pos = torch.arange(0, T, device=device)
|
271 |
|
272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
prefill_decode = decode_one_token_ar
|
274 |
|
275 |
first_token = prefill_decode(
|
276 |
model,
|
277 |
prompt.view(1, codebook_dim, -1),
|
278 |
input_pos,
|
279 |
-
|
|
|
|
|
|
|
|
|
280 |
)
|
281 |
seq[:, T : T + 1] = first_token
|
282 |
|
@@ -286,12 +303,15 @@ def generate(
|
|
286 |
first_token.view(1, codebook_dim, -1),
|
287 |
input_pos,
|
288 |
max_new_tokens - 1,
|
|
|
|
|
|
|
|
|
|
|
289 |
decode_one_token=decode_one_token,
|
290 |
-
**sampling_kwargs,
|
291 |
)
|
292 |
seq = seq[:, : T + 1 + x.size(1)]
|
293 |
seq[:, T + 1 :] = x
|
294 |
-
|
295 |
return seq
|
296 |
|
297 |
|
@@ -303,17 +323,27 @@ def init_model(checkpoint_path, device, precision, compile=False):
|
|
303 |
|
304 |
if isinstance(model, DualARTransformer):
|
305 |
decode_one_token = decode_one_token_ar
|
|
|
306 |
logger.info("Using DualARTransformer")
|
307 |
else:
|
308 |
-
raise ValueError("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
|
310 |
if compile:
|
311 |
logger.info("Compiling function...")
|
312 |
decode_one_token = torch.compile(
|
313 |
decode_one_token,
|
314 |
-
|
315 |
backend="inductor" if torch.cuda.is_available() else "aot_eager",
|
316 |
mode="reduce-overhead" if torch.cuda.is_available() else None,
|
|
|
317 |
)
|
318 |
|
319 |
return model.eval(), decode_one_token
|
@@ -362,27 +392,7 @@ def generate_long(
|
|
362 |
tokenizer = model.tokenizer
|
363 |
base_content_sequence = ContentSequence(modality="interleave")
|
364 |
|
365 |
-
texts = split_text(text, chunk_length) if iterative_prompt else [text]
|
366 |
max_length = model.config.max_seq_len
|
367 |
-
|
368 |
-
# if use_prompt:
|
369 |
-
# base_content_sequence.append(
|
370 |
-
# [
|
371 |
-
# TextPart(text=prompt_text[0]),
|
372 |
-
# VQPart(codes=prompt_tokens[0]),
|
373 |
-
# ],
|
374 |
-
# add_end=True,
|
375 |
-
# )
|
376 |
-
|
377 |
-
# for text in texts:
|
378 |
-
# content_sequence = ContentSequence(modality=None)
|
379 |
-
# base_content_sequence.append(
|
380 |
-
# [
|
381 |
-
# TextPart(text=text),
|
382 |
-
# ],
|
383 |
-
# add_end=True,
|
384 |
-
# )
|
385 |
-
|
386 |
if use_prompt:
|
387 |
for t, c in zip(prompt_text, prompt_tokens):
|
388 |
base_content_sequence.append(
|
@@ -391,26 +401,24 @@ def generate_long(
|
|
391 |
VQPart(codes=c),
|
392 |
],
|
393 |
add_end=True,
|
|
|
394 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
395 |
|
396 |
-
|
397 |
tokenizer, num_codebooks=model.config.num_codebooks
|
398 |
)
|
399 |
-
if
|
400 |
-
raise ValueError(
|
401 |
-
f"Prompt is too long: {encoded_prompts.size(1)} > {max_length - 2048}"
|
402 |
-
)
|
403 |
|
404 |
-
encoded =
|
405 |
-
|
406 |
-
content_sequence = ContentSequence(modality="text")
|
407 |
-
content_sequence.append(TextPart(text=text))
|
408 |
-
encoded.append(
|
409 |
-
content_sequence.encode_for_inference(
|
410 |
-
tokenizer, num_codebooks=model.config.num_codebooks
|
411 |
-
)
|
412 |
-
)
|
413 |
-
logger.info(f"Encoded text: {text}")
|
414 |
|
415 |
# Move temperature, top_p, repetition_penalty to device
|
416 |
# This is important so that changing params doesn't trigger recompile
|
@@ -426,70 +434,53 @@ def generate_long(
|
|
426 |
|
427 |
global_encoded = []
|
428 |
seg_idx = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
429 |
|
430 |
-
|
431 |
-
logger.info(
|
432 |
-
f"Generating sentence {seg_idx + 1}/{len(encoded)} of sample {sample_idx + 1}/{num_samples}"
|
433 |
-
)
|
434 |
-
|
435 |
-
seg = encoded[seg_idx]
|
436 |
-
global_encoded.append(seg)
|
437 |
-
|
438 |
-
if len(base_content_sequence.parts) <= 1 and len(global_encoded) >= 2:
|
439 |
-
cat_encoded = torch.cat(
|
440 |
-
[encoded_prompts, global_encoded[0], global_encoded[1], seg], dim=1
|
441 |
-
)
|
442 |
-
else:
|
443 |
-
cat_encoded = torch.cat([encoded_prompts, seg], dim=1)
|
444 |
-
|
445 |
-
cat_encoded = cat_encoded.to(device=device)
|
446 |
-
prompt_length = cat_encoded.size(1)
|
447 |
-
|
448 |
-
t0 = time.perf_counter()
|
449 |
-
y = generate(
|
450 |
-
model=model,
|
451 |
-
prompt=cat_encoded,
|
452 |
-
max_new_tokens=max_new_tokens,
|
453 |
-
decode_one_token=decode_one_token,
|
454 |
-
temperature=temperature,
|
455 |
-
top_p=top_p,
|
456 |
-
repetition_penalty=repetition_penalty,
|
457 |
-
)
|
458 |
|
459 |
-
|
460 |
-
|
461 |
|
462 |
-
|
463 |
-
torch.cuda.synchronize()
|
464 |
|
465 |
-
|
|
|
|
|
|
|
|
|
|
|
466 |
|
467 |
-
|
468 |
-
tokens_sec = tokens_generated / t
|
469 |
-
logger.info(
|
470 |
-
f"Generated {tokens_generated} tokens in {t:.02f} seconds, {tokens_sec:.02f} tokens/sec"
|
471 |
-
)
|
472 |
logger.info(
|
473 |
-
f"
|
474 |
)
|
475 |
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
# Put the generated tokens
|
482 |
-
# since there is <im_end>, we remove last token
|
483 |
-
codes = y[1:, prompt_length:-1].clone()
|
484 |
-
assert (codes >= 0).all(), f"Negative code found"
|
485 |
|
486 |
-
|
487 |
-
|
488 |
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
|
494 |
# This indicates the end of the current sample
|
495 |
yield GenerateResponse(action="next")
|
@@ -544,6 +535,7 @@ def launch_thread_safe_queue(
|
|
544 |
WrappedGenerateResponse(status="success", response=chunk)
|
545 |
)
|
546 |
except Exception as e:
|
|
|
547 |
response_queue.put(WrappedGenerateResponse(status="error", response=e))
|
548 |
|
549 |
threading.Thread(target=worker, daemon=True).start()
|
|
|
2 |
import queue
|
3 |
import threading
|
4 |
import time
|
5 |
+
import traceback
|
6 |
from contextlib import nullcontext
|
7 |
from dataclasses import dataclass
|
8 |
from pathlib import Path
|
|
|
36 |
from torch.nn.attention import SDPBackend, sdpa_kernel
|
37 |
|
38 |
from fish_speech.models.text2semantic.llama import (
|
39 |
+
BaseTransformer,
|
40 |
DualARTransformer,
|
41 |
NaiveTransformer,
|
42 |
)
|
|
|
51 |
|
52 |
def logits_to_probs(
|
53 |
logits,
|
54 |
+
temperature: torch.Tensor,
|
55 |
+
top_p: torch.Tensor,
|
56 |
+
repetition_penalty: torch.Tensor,
|
57 |
previous_tokens: Optional[torch.Tensor] = None,
|
|
|
|
|
|
|
58 |
) -> torch.Tensor:
|
59 |
# Apply repetition penalty
|
60 |
if previous_tokens is not None:
|
61 |
previous_tokens = previous_tokens.long()
|
62 |
+
score = torch.gather(logits, dim=-1, index=previous_tokens)
|
63 |
score = torch.where(
|
64 |
score < 0, score * repetition_penalty, score / repetition_penalty
|
65 |
)
|
66 |
+
logits.scatter_(dim=-1, index=previous_tokens, src=score)
|
67 |
|
68 |
# Apply top-p sampling
|
69 |
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
|
|
71 |
sorted_indices_to_remove = cum_probs > top_p
|
72 |
sorted_indices_to_remove[0] = False # keep at least one option
|
73 |
indices_to_remove = sorted_indices_to_remove.scatter(
|
74 |
+
dim=-1, index=sorted_indices, src=sorted_indices_to_remove
|
75 |
)
|
76 |
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
77 |
+
logits = logits / torch.clip(temperature, min=1e-5)
|
|
|
78 |
|
79 |
probs = torch.nn.functional.softmax(logits, dim=-1)
|
80 |
return probs
|
|
|
82 |
|
83 |
def sample(
|
84 |
logits,
|
85 |
+
temperature: torch.Tensor,
|
86 |
+
top_p: torch.Tensor,
|
87 |
+
repetition_penalty: torch.Tensor,
|
88 |
previous_tokens: Optional[torch.Tensor] = None,
|
|
|
89 |
) -> Tuple[torch.Tensor, torch.Tensor]:
|
90 |
probs = logits_to_probs(
|
91 |
+
logits=logits[0, -1],
|
92 |
+
temperature=temperature,
|
93 |
+
top_p=top_p,
|
94 |
+
repetition_penalty=repetition_penalty,
|
95 |
+
previous_tokens=previous_tokens,
|
96 |
)
|
97 |
idx_next = multinomial_sample_one_no_sync(probs)
|
98 |
return idx_next, probs
|
|
|
102 |
model: DualARTransformer,
|
103 |
x: torch.Tensor,
|
104 |
input_pos: torch.Tensor,
|
105 |
+
temperature: torch.Tensor,
|
106 |
+
top_p: torch.Tensor,
|
107 |
+
repetition_penalty: torch.Tensor,
|
108 |
+
audio_masks: torch.Tensor,
|
109 |
+
audio_parts: torch.Tensor,
|
110 |
previous_tokens: torch.Tensor = None,
|
|
|
111 |
) -> torch.Tensor:
|
112 |
+
# print(x, torch.count_nonzero(vq_masks))
|
113 |
+
x = model.forward_generate(
|
114 |
+
x,
|
115 |
+
input_pos,
|
116 |
+
audio_masks=audio_masks,
|
117 |
+
audio_parts=audio_parts,
|
118 |
+
)
|
119 |
+
logits = x.logits # [:, -1:]
|
120 |
+
hidden_states = x.hidden_states # [:, -1:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
codebooks = [
|
123 |
sample(
|
124 |
+
logits,
|
125 |
+
temperature=temperature,
|
126 |
+
top_p=top_p,
|
127 |
+
repetition_penalty=repetition_penalty,
|
128 |
previous_tokens=(
|
129 |
+
previous_tokens[:, 0] if previous_tokens is not None else None
|
130 |
+
),
|
|
|
131 |
)[0]
|
132 |
]
|
133 |
|
|
|
|
|
134 |
# Cleanup the cache
|
135 |
for layer in model.fast_layers:
|
136 |
layer.attention.kv_cache.k_cache.fill_(0)
|
|
|
148 |
[codebook_idx], device=hidden_states.device, dtype=torch.long
|
149 |
)
|
150 |
logits = model.forward_generate_fast(hidden_states, input_pos)
|
151 |
+
|
152 |
+
short_logits = logits[:, :, :1024]
|
153 |
+
|
154 |
+
# Convert logits to probs
|
155 |
a = sample(
|
156 |
+
short_logits,
|
157 |
+
temperature=temperature,
|
158 |
+
top_p=top_p,
|
159 |
+
repetition_penalty=repetition_penalty,
|
160 |
previous_tokens=(
|
161 |
previous_tokens[codebook_idx + 1]
|
162 |
if previous_tokens is not None
|
163 |
else None
|
164 |
),
|
|
|
165 |
)[0]
|
166 |
+
|
167 |
hidden_states = model.fast_embeddings(a)
|
168 |
codebooks.append(a)
|
169 |
|
170 |
+
codebooks = torch.stack(codebooks, dim=1)
|
171 |
+
return codebooks.T
|
|
|
172 |
|
173 |
|
174 |
def decode_n_tokens(
|
|
|
176 |
cur_token: torch.Tensor,
|
177 |
input_pos: torch.Tensor,
|
178 |
num_new_tokens: int,
|
179 |
+
temperature: torch.Tensor,
|
180 |
+
top_p: torch.Tensor,
|
181 |
+
repetition_penalty: torch.Tensor,
|
182 |
+
audio_masks: torch.Tensor,
|
183 |
+
audio_parts: torch.Tensor,
|
184 |
decode_one_token=decode_one_token_ar,
|
|
|
185 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
previous_tokens = torch.zeros(
|
187 |
(model.config.num_codebooks + 1, model.config.max_seq_len),
|
188 |
dtype=torch.int,
|
|
|
197 |
else:
|
198 |
window = previous_tokens[:, i - win_size : i]
|
199 |
|
200 |
+
with sdpa_kernel(
|
201 |
+
SDPBackend.MATH
|
202 |
+
): # Actually better for Inductor to codegen attention here
|
203 |
next_token = decode_one_token(
|
204 |
model=model,
|
205 |
x=cur_token,
|
206 |
input_pos=input_pos,
|
207 |
previous_tokens=window,
|
208 |
+
temperature=temperature,
|
209 |
+
top_p=top_p,
|
210 |
+
repetition_penalty=repetition_penalty,
|
211 |
+
audio_masks=audio_masks,
|
212 |
+
audio_parts=audio_parts,
|
213 |
).clone()
|
214 |
|
215 |
input_pos += 1
|
|
|
228 |
@torch.inference_mode()
|
229 |
def generate(
|
230 |
*,
|
231 |
+
model: BaseTransformer,
|
232 |
prompt: torch.Tensor,
|
233 |
max_new_tokens: int,
|
234 |
+
audio_masks: torch.Tensor,
|
235 |
+
audio_parts: torch.Tensor,
|
236 |
decode_one_token=decode_one_token_ar,
|
237 |
+
num_samples: int = 1,
|
238 |
**sampling_kwargs,
|
239 |
+
):
|
240 |
"""
|
241 |
+
Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
"""
|
243 |
|
244 |
+
# create an empty tensor of the expected final shape and fill in the current tokens
|
245 |
T = prompt.size(1)
|
246 |
+
prompt = prompt[None].repeat(num_samples, 1, 1)
|
247 |
+
|
248 |
+
if T >= model.config.max_seq_len:
|
249 |
+
raise ValueError(
|
250 |
+
f"Input sequence length {T} exceeds max_seq_len {model.config.max_seq_len}"
|
251 |
+
)
|
252 |
|
253 |
if max_new_tokens:
|
254 |
if T + max_new_tokens > model.config.max_seq_len:
|
255 |
max_new_tokens = model.config.max_seq_len - T
|
|
|
256 |
|
257 |
T_new = T + max_new_tokens
|
258 |
else:
|
|
|
260 |
max_new_tokens = T_new - T
|
261 |
|
262 |
device, dtype = prompt.device, prompt.dtype
|
263 |
+
with torch.device(device):
|
264 |
+
model.setup_caches(
|
265 |
+
max_batch_size=num_samples,
|
266 |
+
max_seq_len=model.config.max_seq_len,
|
267 |
+
dtype=next(model.parameters()).dtype,
|
268 |
+
)
|
269 |
|
270 |
codebook_dim = 1 + model.config.num_codebooks
|
271 |
+
input_pos = torch.arange(0, T, device=device)
|
272 |
empty = torch.empty(
|
273 |
(codebook_dim, model.config.max_seq_len), dtype=dtype, device=device
|
274 |
)
|
275 |
empty[:, :T] = prompt
|
276 |
seq = empty
|
|
|
277 |
|
278 |
+
temperature = torch.tensor(
|
279 |
+
sampling_kwargs["temperature"], device=device, dtype=torch.bfloat16
|
280 |
+
)
|
281 |
+
top_p = torch.tensor(sampling_kwargs["top_p"], device=device, dtype=torch.bfloat16)
|
282 |
+
repetition_penalty = torch.tensor(
|
283 |
+
sampling_kwargs["repetition_penalty"], device=device, dtype=torch.bfloat16
|
284 |
+
)
|
285 |
+
|
286 |
prefill_decode = decode_one_token_ar
|
287 |
|
288 |
first_token = prefill_decode(
|
289 |
model,
|
290 |
prompt.view(1, codebook_dim, -1),
|
291 |
input_pos,
|
292 |
+
temperature,
|
293 |
+
top_p,
|
294 |
+
repetition_penalty,
|
295 |
+
audio_masks,
|
296 |
+
audio_parts,
|
297 |
)
|
298 |
seq[:, T : T + 1] = first_token
|
299 |
|
|
|
303 |
first_token.view(1, codebook_dim, -1),
|
304 |
input_pos,
|
305 |
max_new_tokens - 1,
|
306 |
+
temperature=temperature,
|
307 |
+
top_p=top_p,
|
308 |
+
repetition_penalty=repetition_penalty,
|
309 |
+
audio_masks=audio_masks,
|
310 |
+
audio_parts=audio_parts,
|
311 |
decode_one_token=decode_one_token,
|
|
|
312 |
)
|
313 |
seq = seq[:, : T + 1 + x.size(1)]
|
314 |
seq[:, T + 1 :] = x
|
|
|
315 |
return seq
|
316 |
|
317 |
|
|
|
323 |
|
324 |
if isinstance(model, DualARTransformer):
|
325 |
decode_one_token = decode_one_token_ar
|
326 |
+
prefill_n_tokens = decode_one_token_ar
|
327 |
logger.info("Using DualARTransformer")
|
328 |
else:
|
329 |
+
raise ValueError("Unsupported model type")
|
330 |
+
|
331 |
+
# Initialize cache
|
332 |
+
with torch.device(device):
|
333 |
+
model.setup_caches(
|
334 |
+
max_batch_size=1,
|
335 |
+
max_seq_len=model.config.max_seq_len,
|
336 |
+
dtype=next(model.parameters()).dtype,
|
337 |
+
)
|
338 |
|
339 |
if compile:
|
340 |
logger.info("Compiling function...")
|
341 |
decode_one_token = torch.compile(
|
342 |
decode_one_token,
|
343 |
+
# mode="max-autotune-no-cudagraphs",
|
344 |
backend="inductor" if torch.cuda.is_available() else "aot_eager",
|
345 |
mode="reduce-overhead" if torch.cuda.is_available() else None,
|
346 |
+
fullgraph=True,
|
347 |
)
|
348 |
|
349 |
return model.eval(), decode_one_token
|
|
|
392 |
tokenizer = model.tokenizer
|
393 |
base_content_sequence = ContentSequence(modality="interleave")
|
394 |
|
|
|
395 |
max_length = model.config.max_seq_len
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
if use_prompt:
|
397 |
for t, c in zip(prompt_text, prompt_tokens):
|
398 |
base_content_sequence.append(
|
|
|
401 |
VQPart(codes=c),
|
402 |
],
|
403 |
add_end=True,
|
404 |
+
speaker=0,
|
405 |
)
|
406 |
+
base_content_sequence.append(
|
407 |
+
[
|
408 |
+
TextPart(text=text),
|
409 |
+
],
|
410 |
+
add_end=False,
|
411 |
+
speaker=0,
|
412 |
+
)
|
413 |
|
414 |
+
encoded, audio_masks, audio_parts = base_content_sequence.encode_for_inference(
|
415 |
tokenizer, num_codebooks=model.config.num_codebooks
|
416 |
)
|
417 |
+
if encoded.size(1) > max_length - 2048:
|
418 |
+
raise ValueError(f"Prompt is too long: {encoded.size(1)} > {max_length - 2048}")
|
|
|
|
|
419 |
|
420 |
+
encoded = encoded.to(device=device)
|
421 |
+
logger.info(f"Encoded text: {text}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
422 |
|
423 |
# Move temperature, top_p, repetition_penalty to device
|
424 |
# This is important so that changing params doesn't trigger recompile
|
|
|
434 |
|
435 |
global_encoded = []
|
436 |
seg_idx = 0
|
437 |
+
prompt_length = encoded.size(1)
|
438 |
+
|
439 |
+
t0 = time.perf_counter()
|
440 |
+
y = generate(
|
441 |
+
model=model,
|
442 |
+
prompt=encoded,
|
443 |
+
max_new_tokens=max_new_tokens,
|
444 |
+
audio_masks=audio_masks,
|
445 |
+
audio_parts=audio_parts,
|
446 |
+
decode_one_token=decode_one_token,
|
447 |
+
temperature=temperature,
|
448 |
+
top_p=top_p,
|
449 |
+
repetition_penalty=repetition_penalty,
|
450 |
+
)
|
451 |
|
452 |
+
if sample_idx == 0 and seg_idx == 0 and compile:
|
453 |
+
logger.info(f"Compilation time: {time.perf_counter() - t0:.2f} seconds")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
454 |
|
455 |
+
if torch.cuda.is_available():
|
456 |
+
torch.cuda.synchronize()
|
457 |
|
458 |
+
t = time.perf_counter() - t0
|
|
|
459 |
|
460 |
+
tokens_generated = y.size(1) - prompt_length
|
461 |
+
tokens_sec = tokens_generated / t
|
462 |
+
logger.info(
|
463 |
+
f"Generated {tokens_generated} tokens in {t:.02f} seconds, {tokens_sec:.02f} tokens/sec"
|
464 |
+
)
|
465 |
+
logger.info(f"Bandwidth achieved: {model_size * tokens_sec / 1e9:.02f} GB/s")
|
466 |
|
467 |
+
if torch.cuda.is_available():
|
|
|
|
|
|
|
|
|
468 |
logger.info(
|
469 |
+
f"GPU Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB"
|
470 |
)
|
471 |
|
472 |
+
# Put the generated tokens
|
473 |
+
# since there is <im_end>, we remove last token
|
474 |
+
codes = y[1:, prompt_length:-1].clone()
|
475 |
+
assert (codes >= 0).all(), f"Negative code found"
|
|
|
|
|
|
|
|
|
|
|
476 |
|
477 |
+
decoded = y[:, prompt_length:].clone()
|
478 |
+
# But for global encoding, we should keep the <im_end> token
|
479 |
|
480 |
+
global_encoded.append(decoded.cpu())
|
481 |
+
assert (codes >= 0).all(), f"Negative code found: {codes}"
|
482 |
+
yield GenerateResponse(action="sample", codes=codes, text=text)
|
483 |
+
seg_idx += 1
|
484 |
|
485 |
# This indicates the end of the current sample
|
486 |
yield GenerateResponse(action="next")
|
|
|
535 |
WrappedGenerateResponse(status="success", response=chunk)
|
536 |
)
|
537 |
except Exception as e:
|
538 |
+
logger.error(traceback.format_exc())
|
539 |
response_queue.put(WrappedGenerateResponse(status="error", response=e))
|
540 |
|
541 |
threading.Thread(target=worker, daemon=True).start()
|
fish_speech/models/text2semantic/llama.py
CHANGED
@@ -320,9 +320,45 @@ class BaseTransformer(nn.Module):
|
|
320 |
self,
|
321 |
inp: Tensor,
|
322 |
input_pos: Optional[Tensor] = None,
|
|
|
|
|
323 |
return_all: bool = False,
|
324 |
) -> BaseTransformerForwardResult:
|
325 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
|
327 |
if input_pos is None:
|
328 |
input_pos = torch.arange(inp.shape[-1], device=x.device)
|
@@ -595,69 +631,69 @@ class DualARTransformer(BaseTransformer):
|
|
595 |
def forward(
|
596 |
self,
|
597 |
inp: Tensor,
|
|
|
598 |
key_padding_mask: Optional[Tensor] = None,
|
|
|
|
|
|
|
|
|
|
|
599 |
) -> TransformerForwardResult:
|
600 |
-
parent_result = super().forward(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
601 |
token_logits = parent_result.logits
|
602 |
x = parent_result.hidden_states
|
603 |
-
x = self.fast_project_in(x)
|
604 |
|
605 |
# Fast transformer
|
606 |
fast_seq_len = self.config.num_codebooks
|
607 |
fast_mask = self.causal_mask[
|
608 |
None, None, :fast_seq_len, :fast_seq_len
|
609 |
] # (B, N, Q, K)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
610 |
|
611 |
-
|
612 |
-
codebooks = inp[:, 1:-1, 1:]
|
613 |
-
codebooks = F.pad(codebooks, (0, 1), value=0)
|
614 |
codebook_embeddings = self.fast_embeddings(codebooks)
|
615 |
x = torch.cat([x[:, None], codebook_embeddings], dim=1)
|
616 |
-
b, s = x.size(0), x.size(2)
|
617 |
-
x = rearrange(x, "b n s d -> (b s) n d") # flatten the batch and seq_len
|
618 |
-
|
619 |
-
# Remove padded part
|
620 |
-
codebooks = rearrange(codebooks, "b n s -> (b s) n")
|
621 |
-
codebook_mask = (codebooks == 0).all(dim=-1)
|
622 |
-
|
623 |
-
if torch.all(codebook_mask):
|
624 |
-
# If all codebooks are padded, we keep first 8 to make sure the model runs
|
625 |
-
codebook_mask[:8] = False
|
626 |
-
|
627 |
-
x_bs, x_len = x.size(0), x.size(1)
|
628 |
-
x = x[~codebook_mask]
|
629 |
|
630 |
for layer in self.fast_layers:
|
631 |
if self.config.use_gradient_checkpointing and self.training:
|
632 |
-
x = checkpoint(
|
633 |
-
layer, x, self.fast_freqs_cis, fast_mask, use_reentrant=True
|
634 |
-
)
|
635 |
else:
|
636 |
-
x = layer(x,
|
637 |
|
638 |
# unflatten the batch and num_codebooks
|
639 |
fast_out = self.fast_norm(x)
|
640 |
codebook_logits = self.fast_output(fast_out)
|
641 |
|
642 |
-
# Re-pad the codebook_logits
|
643 |
-
buffer = torch.zeros(
|
644 |
-
x_bs,
|
645 |
-
x_len,
|
646 |
-
codebook_logits.size(-1),
|
647 |
-
device=codebook_logits.device,
|
648 |
-
dtype=codebook_logits.dtype,
|
649 |
-
)
|
650 |
-
buffer[~codebook_mask] = codebook_logits
|
651 |
-
codebook_logits = buffer
|
652 |
-
|
653 |
assert codebook_logits.shape[1] == self.config.num_codebooks
|
654 |
-
codebook_logits = rearrange(
|
655 |
-
codebook_logits,
|
656 |
-
"(b s) n d -> b s n d",
|
657 |
-
b=b,
|
658 |
-
s=s,
|
659 |
-
n=self.config.num_codebooks,
|
660 |
-
)
|
661 |
|
662 |
return TransformerForwardResult(
|
663 |
token_logits=token_logits,
|
@@ -668,7 +704,7 @@ class DualARTransformer(BaseTransformer):
|
|
668 |
self, x: Tensor, input_pos: Optional[Tensor] = None
|
669 |
) -> Tensor:
|
670 |
# Fast transformer
|
671 |
-
x = x.view(
|
672 |
|
673 |
fast_mask = self.causal_mask[
|
674 |
None, None, input_pos, : self.config.num_codebooks
|
@@ -688,9 +724,10 @@ class DualARTransformer(BaseTransformer):
|
|
688 |
self,
|
689 |
x: Tensor,
|
690 |
input_pos: Optional[Tensor] = None,
|
691 |
-
|
|
|
692 |
) -> TransformerForwardResult:
|
693 |
-
x = super().forward_generate(x, input_pos,
|
694 |
x.hidden_states = self.fast_project_in(x.hidden_states)
|
695 |
return x
|
696 |
|
|
|
320 |
self,
|
321 |
inp: Tensor,
|
322 |
input_pos: Optional[Tensor] = None,
|
323 |
+
audio_masks: Optional[Tensor] = None,
|
324 |
+
audio_parts: Optional[Tensor] = None,
|
325 |
return_all: bool = False,
|
326 |
) -> BaseTransformerForwardResult:
|
327 |
+
# This is used for generation, optimized for torch compile
|
328 |
+
# assert (
|
329 |
+
# self.max_seq_len != -1 and self.max_batch_size != -1
|
330 |
+
# ), "Please call setup_caches before forward_generate"
|
331 |
+
|
332 |
+
embeds = []
|
333 |
+
for i in range(self.config.num_codebooks):
|
334 |
+
emb = self.codebook_embeddings(
|
335 |
+
inp[:, i + 1] + i * self.config.codebook_size
|
336 |
+
)
|
337 |
+
embeds.append(emb)
|
338 |
+
|
339 |
+
vq_embeds_sum = torch.stack(embeds, dim=1).sum(dim=1)
|
340 |
+
|
341 |
+
vq_masks = (inp[:, 0] >= self.tokenizer.semantic_begin_id) & (
|
342 |
+
inp[:, 0] <= self.tokenizer.semantic_end_id
|
343 |
+
)
|
344 |
+
|
345 |
+
vq_embeds_sum[~vq_masks] = 0
|
346 |
+
x = self.embeddings(inp[:, 0]) + vq_embeds_sum
|
347 |
+
|
348 |
+
if self.config.scale_codebook_embeddings:
|
349 |
+
# Expand vq_masks to match x's shape
|
350 |
+
vq_masks_expanded = vq_masks.unsqueeze(-1).expand_as(x)
|
351 |
+
x = torch.where(
|
352 |
+
vq_masks_expanded, x / math.sqrt(self.config.num_codebooks + 1), x
|
353 |
+
)
|
354 |
+
|
355 |
+
# Audio embeddings
|
356 |
+
if audio_parts is not None:
|
357 |
+
audio_embeds = self.audio_projector(audio_parts)
|
358 |
+
if self.config.scale_codebook_embeddings:
|
359 |
+
x[audio_masks] = audio_embeds / math.sqrt(2)
|
360 |
+
else:
|
361 |
+
x[audio_masks] = audio_embeds
|
362 |
|
363 |
if input_pos is None:
|
364 |
input_pos = torch.arange(inp.shape[-1], device=x.device)
|
|
|
631 |
def forward(
|
632 |
self,
|
633 |
inp: Tensor,
|
634 |
+
labels: Optional[Tensor] = None,
|
635 |
key_padding_mask: Optional[Tensor] = None,
|
636 |
+
vq_parts: Optional[Tensor] = None,
|
637 |
+
vq_masks: Optional[Tensor] = None,
|
638 |
+
vq_require_losses: Optional[Tensor] = None,
|
639 |
+
mel_parts: Optional[Tensor] = None,
|
640 |
+
mel_masks: Optional[Tensor] = None,
|
641 |
) -> TransformerForwardResult:
|
642 |
+
parent_result = super().forward(
|
643 |
+
inp=inp,
|
644 |
+
key_padding_mask=key_padding_mask,
|
645 |
+
vq_parts=vq_parts,
|
646 |
+
vq_masks=vq_masks,
|
647 |
+
mel_parts=mel_parts,
|
648 |
+
mel_masks=mel_masks,
|
649 |
+
)
|
650 |
token_logits = parent_result.logits
|
651 |
x = parent_result.hidden_states
|
|
|
652 |
|
653 |
# Fast transformer
|
654 |
fast_seq_len = self.config.num_codebooks
|
655 |
fast_mask = self.causal_mask[
|
656 |
None, None, :fast_seq_len, :fast_seq_len
|
657 |
] # (B, N, Q, K)
|
658 |
+
fast_freqs_cis = self.fast_freqs_cis[:fast_seq_len]
|
659 |
+
|
660 |
+
# Extract corresponding parts with labels
|
661 |
+
codebook_mask = labels == self.semantic_token_id
|
662 |
+
# This gives where input token is <|semantic|>
|
663 |
+
x = x[codebook_mask]
|
664 |
+
|
665 |
+
if x.shape[0] == 0:
|
666 |
+
# Use dummy input when no vq is required
|
667 |
+
x = torch.zeros(
|
668 |
+
(4, self.config.dim),
|
669 |
+
device=x.device,
|
670 |
+
dtype=x.dtype,
|
671 |
+
)
|
672 |
+
codebooks = torch.zeros(
|
673 |
+
(x.shape[0], self.config.num_codebooks - 1),
|
674 |
+
device=x.device,
|
675 |
+
dtype=torch.int,
|
676 |
+
)
|
677 |
+
else:
|
678 |
+
codebooks = vq_parts[..., :-1][vq_require_losses][
|
679 |
+
vq_masks[vq_require_losses]
|
680 |
+
]
|
681 |
|
682 |
+
x = self.fast_project_in(x)
|
|
|
|
|
683 |
codebook_embeddings = self.fast_embeddings(codebooks)
|
684 |
x = torch.cat([x[:, None], codebook_embeddings], dim=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
685 |
|
686 |
for layer in self.fast_layers:
|
687 |
if self.config.use_gradient_checkpointing and self.training:
|
688 |
+
x = checkpoint(layer, x, fast_freqs_cis, fast_mask, use_reentrant=True)
|
|
|
|
|
689 |
else:
|
690 |
+
x = layer(x, fast_freqs_cis, fast_mask)
|
691 |
|
692 |
# unflatten the batch and num_codebooks
|
693 |
fast_out = self.fast_norm(x)
|
694 |
codebook_logits = self.fast_output(fast_out)
|
695 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
696 |
assert codebook_logits.shape[1] == self.config.num_codebooks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
697 |
|
698 |
return TransformerForwardResult(
|
699 |
token_logits=token_logits,
|
|
|
704 |
self, x: Tensor, input_pos: Optional[Tensor] = None
|
705 |
) -> Tensor:
|
706 |
# Fast transformer
|
707 |
+
x = x.view(x.shape[0], 1, -1)
|
708 |
|
709 |
fast_mask = self.causal_mask[
|
710 |
None, None, input_pos, : self.config.num_codebooks
|
|
|
724 |
self,
|
725 |
x: Tensor,
|
726 |
input_pos: Optional[Tensor] = None,
|
727 |
+
audio_masks: Optional[Tensor] = None,
|
728 |
+
audio_parts: Optional[Tensor] = None,
|
729 |
) -> TransformerForwardResult:
|
730 |
+
x = super().forward_generate(x, input_pos, audio_masks, audio_parts)
|
731 |
x.hidden_states = self.fast_project_in(x.hidden_states)
|
732 |
return x
|
733 |
|