File size: 11,145 Bytes
542275f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1285a73
542275f
 
 
 
1285a73
 
542275f
1285a73
542275f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1285a73
 
 
 
 
 
 
 
 
 
 
 
 
542275f
 
 
 
 
 
 
 
 
 
 
 
 
1285a73
542275f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1285a73
542275f
 
 
 
 
 
 
 
 
 
 
 
1285a73
 
 
542275f
 
1285a73
542275f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1285a73
 
542275f
 
 
 
 
 
 
 
 
 
 
 
 
 
1285a73
 
542275f
 
 
 
1285a73
542275f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1285a73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
542275f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce4fe6e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
from flask import Flask, request, jsonify, send_from_directory
import speech_recognition as sr
import datetime
import pyttsx3
from langdetect import detect
from huggingface_hub import login
from sentence_transformers import SentenceTransformer
from transformers import pipeline, AutoTokenizer, AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM
import faiss
import numpy as np
import pandas as pd
import json
import webbrowser
from pydub import AudioSegment
import os
from werkzeug.utils import secure_filename
import tempfile
from dotenv import load_dotenv # Ensure dotenv is imported for .env loading

app = Flask(__name__, static_folder='.') # Serve static files from the current directory

# Load Hugging Face API key from environment variable
load_dotenv() # Load environment variables from .env file
hf_token = os.environ.get("API_KEY")
if not hf_token:
    raise ValueError("Hugging Face API key not found. Please set 'API_KEY' as an environment variable or in a .env file.")

login(token=hf_token)

# QA Models
qa_model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
qa_tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
qa_pipeline = pipeline("question-answering", model=qa_model, tokenizer=qa_tokenizer)

# Summarization Model
summarizer_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
summarizer_tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
summarizer_pipeline = pipeline("summarization", model=summarizer_model, tokenizer=summarizer_tokenizer)

embed_model = SentenceTransformer("sentence-transformers/paraphrase-MiniLM-L6-v2")

# Load both datasets
try:
    df_parquet = pd.read_parquet("ibtehaj dataset.parquet")
    corpus_parquet = df_parquet["text"].dropna().tolist()
except FileNotFoundError:
    raise FileNotFoundError("ibtehaj dataset.parquet not found. Make sure it's in the same directory as app.py")

try:
    with open("pdf_data.json", "r", encoding="utf-8") as f:
        json_data = json.load(f)
except FileNotFoundError:
    raise FileNotFoundError("pdf_data.json not found. Make sure it's in the same directory as app.py")
except json.JSONDecodeError as e:
    raise ValueError(f"Error decoding pdf_data.json: {e}")

# Extract text from JSON
corpus_json = []
for entry in json_data:
    if isinstance(entry, dict) and "text" in entry:
        text = entry["text"].strip()
        if text:
            corpus_json.append(text)

# Combine both corpora
corpus = corpus_parquet + corpus_json

# Compute embeddings
# This can take a while. Consider pre-computing and saving the index if corpus is large.
embeddings = embed_model.encode(corpus, show_progress_bar=True, batch_size=16)

# Build FAISS index
index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(np.array(embeddings))

def rag_answer(question: str, k: int = 3) -> str:
    q_emb = embed_model.encode([question])
    D, I = index.search(q_emb, k)
    context = "\n\n".join(corpus[i] for i in I[0] if 0 <= i < len(corpus))

    if not context.strip():
        return "Context is empty. Try rephrasing the question."

    try:
        result = qa_pipeline(question=question, context=context)
        raw_answer = result.get("answer", "No answer found.")

        # Summarize if answer is too long (>40 words or 300 characters)
        if len(raw_answer.split()) > 40 or len(raw_answer) > 300:
            summary = summarizer_pipeline(raw_answer, max_length=50, min_length=15, do_sample=False)
            summarized_answer = summary[0]['summary_text']
        else:
            summarized_answer = raw_answer

        return f"Answer: {summarized_answer}\n\n[Context Used]:\n{context[:500]}..."
    except Exception as e:
        return f"Error: {e}"

# Global for TTS engine (to allow stopping)
tts_engine = None

def init_tts_engine():
    global tts_engine
    if tts_engine is None:
        tts_engine = pyttsx3.init()
        tts_engine.setProperty('rate', 150)
        tts_engine.setProperty('volume', 1.0)
        voices = tts_engine.getProperty('voices')
        for v in voices:
            if "zira" in v.name.lower() or "female" in v.name.lower():
                tts_engine.setProperty('voice', v.id)
                break

init_tts_engine() # Initialize TTS engine once on startup

# Global variables for managing state (simplify for web context)
conversation_history = []
last_question_text = ""
last_answer_text = ""

@app.route('/')
def serve_index():
    return send_from_directory('.', 'index.html')

@app.route('/<path:path>')
def serve_static_files(path):
    # This route serves static files like CSS, JS, and images
    # It must be specific to paths that exist as files, otherwise it might catch API calls
    # For now, it's fine, but in complex apps, static files are often served by Nginx/Apache.
    return send_from_directory('.', path)


@app.route('/answer', methods=['POST'])
def generate_answer_endpoint():
    global last_question_text, last_answer_text, conversation_history
    data = request.get_json()
    question = data.get('question', '').strip()

    if not question:
        return jsonify({"answer": "Please provide a question."}), 400

    last_question_text = question
    timestamp = datetime.datetime.now().strftime("%H:%M:%S")
    conversation_history.append({"role": "user", "time": timestamp, "text": question})

    ans = rag_answer(question)
    last_answer_text = ans
    conversation_history.append({"role": "bot", "time": timestamp, "text": ans})

    return jsonify({"answer": ans})

@app.route('/read-aloud', methods=['POST'])
def read_aloud_endpoint():
    # This endpoint is generally not needed if client-side SpeechSynthesis API is used.
    # Keeping it for completeness if server-side TTS is desired.
    data = request.get_json()
    text_to_read = data.get('text', '').strip()

    if not text_to_read:
        return jsonify({"status": "No text provided to read."}), 400

    try:
        # Create a temporary file for the speech audio
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
            temp_audio_path = fp.name

        tts_engine.save_to_file(text_to_read, temp_audio_path)
        tts_engine.runAndWait()

        # You would typically serve this file or stream it for client playback.
        # For this setup, we'll confirm generation. The frontend handles playback.
        return jsonify({"status": "TTS audio generated (server-side)."})
    except Exception as e:
        return jsonify({"status": f"Error during TTS: {str(e)}"}), 500
    finally:
        if 'temp_audio_path' in locals() and os.path.exists(temp_audio_path):
            os.remove(temp_audio_path)


@app.route('/upload-mp3', methods=['POST'])
def upload_mp3_endpoint():
    global last_question_text, last_answer_text, conversation_history

    if 'file' not in request.files:
        return jsonify({"message": "No file part"}), 400
    file = request.files['file']
    if file.filename == '':
        return jsonify({"message": "No selected file"}), 400
    if file:
        filename = secure_filename(file.filename)
        # Create a temporary directory to save the uploaded file and its WAV conversion
        # Ensure that the temp directory is managed for cleanup.
        try:
            with tempfile.TemporaryDirectory() as tmpdir:
                mp3_path = os.path.join(tmpdir, filename)
                file.save(mp3_path)

                wav_path = os.path.join(tmpdir, filename.replace(".mp3", ".wav"))
                try:
                    sound = AudioSegment.from_mp3(mp3_path)
                    sound.export(wav_path, format="wav")
                except Exception as e:
                    # Catch pydub/ffmpeg related errors
                    return jsonify({"message": f"Error converting MP3 to WAV. Ensure FFmpeg is installed and in your system's PATH. Details: {e}"}), 500

                try:
                    recognizer = sr.Recognizer()
                    with sr.AudioFile(wav_path) as src:
                        audio = recognizer.record(src)
                        text = recognizer.recognize_google(audio)
                except sr.UnknownValueError:
                    return jsonify({"message": "Speech not understood. Please try again."}), 400
                except sr.RequestError as e:
                    return jsonify({"message": f"Could not request results from speech recognition service; {e}"}), 500
                except Exception as e: # Catch any other unexpected SR errors
                    return jsonify({"message": f"An unexpected error occurred during speech recognition: {e}"}), 500


                # For web, you don't typically "save that file in .txt format and asks the user where to store that" server-side.
                # The transcription is returned to the client. The client can then decide to save it.
                return jsonify({
                    "message": "MP3 transcribed successfully.",
                    "transcription": text
                })
        except Exception as e:
            # Catch any errors related to temporary directory creation or file saving
            return jsonify({"message": f"An error occurred during file upload or temporary processing: {e}"}), 500
    # This point should not be reached if 'if file' condition is handled.
    return jsonify({"message": "An unknown file processing error occurred."}), 500


@app.route('/summarize', methods=['POST'])
def summarize_endpoint():
    data = request.get_json()
    text_to_summarize = data.get('text', '').strip()

    if not text_to_summarize:
        return jsonify({"summary": "No text provided for summarization."}), 400

    def chunk_text(text, max_chunk_size=4000):
        sentences = text.split(". ")
        chunks = []
        current_chunk = ""
        for sentence in sentences:
            # Add sentence length + 2 for ". "
            if len(current_chunk) + len(sentence) + 2 < max_chunk_size:
                current_chunk += sentence + ". "
            else:
                chunks.append(current_chunk.strip())
                current_chunk = sentence + ". "
        if current_chunk:
            chunks.append(current_chunk.strip())
        return chunks

    try:
        chunks = chunk_text(text_to_summarize)
        summaries = [
            summarizer_pipeline(chunk, max_length=150, min_length=50, do_sample=False)[0]["summary_text"]
            for chunk in chunks
        ]
        final_input = " ".join(summaries)
        final_summary = summarizer_pipeline(final_input, max_length=150, min_length=50, do_sample=False)[0]["summary_text"]
        return jsonify({"summary": final_summary})
    except Exception as e:
        return jsonify({"summary": f"Error during summarization: {e}"}), 500

@app.route('/history', methods=['GET'])
def get_history():
    return jsonify({"history": conversation_history})

if __name__ == '__main__':
    # Make sure your datasets are in the same directory as app.py
    # ibtehaj dataset.parquet
    # pdf_data.json
    # man.jpg (for the image)
    app.run(debug=True) # debug=True allows for automatic reloading on code changes