Spaces:
Running
on
Zero
Running
on
Zero
import time | |
import spaces | |
import gradio as gr | |
import torch | |
from vui.inference import render | |
from vui.model import Vui | |
def get_available_models(): | |
"""Extract all CAPs static variables from Vui class that end with .pt""" | |
models = {} | |
for attr_name in dir(Vui): | |
if attr_name.isupper(): | |
attr_value = getattr(Vui, attr_name) | |
if isinstance(attr_value, str) and attr_value.endswith(".pt"): | |
models[attr_name] = attr_value | |
return models | |
# AVAILABLE_MODELS = get_available_models() | |
AVAILABLE_MODELS = {"COHOST": Vui.COHOST} | |
print(f"Available models: {list(AVAILABLE_MODELS.keys())}") | |
current_model = None | |
current_model_name = None | |
def load_and_warm_model(model_name): | |
"""Load and warm up a specific model""" | |
global current_model, current_model_name | |
if current_model_name == model_name and current_model is not None: | |
print(f"Model {model_name} already loaded and warmed up!") | |
return current_model | |
print(f"Loading model {model_name}...") | |
model_path = AVAILABLE_MODELS[model_name] | |
model = Vui.from_pretrained_inf(model_path).cuda() | |
print(f"Compiling model {model_name}...") | |
# model.decoder = torch.compile(model.decoder, fullgraph=True) | |
print(f"Warming up model {model_name}...") | |
warmup_text = "Hello, this is a test. Let's say some random shizz" | |
render( | |
model, | |
warmup_text, | |
max_secs=10, | |
) | |
current_model = model | |
current_model_name = model_name | |
print(f"Model {model_name} loaded and warmed up successfully!") | |
return model | |
# Load default model (COHOST) | |
default_model = ( | |
"COHOST" if "COHOST" in AVAILABLE_MODELS else list(AVAILABLE_MODELS.keys())[0] | |
) | |
model = load_and_warm_model(default_model) | |
# Preload sample 1 (index 0) with current model | |
print("Preloading sample 1...") | |
sample_1_text = """Welcome to Fluxions, the podcast where... we uh explore how technology is shaping the world around us. I'm your host, Alex. | |
[breath] And I'm Jamie um [laugh] today, we're diving into a [hesitate] topic that's transforming customer service uh voice technology for agents. | |
That's right. We're [hesitate] talking about the AI-driven tools that are making those long, frustrating customer service calls a little more bearable, for both the customer and the agents.""" | |
sample_1_audio = render( | |
current_model, | |
sample_1_text, | |
) | |
sample_1_audio = sample_1_audio.cpu() | |
sample_1_audio = sample_1_audio[..., :-2000] # Trim end artifacts | |
preloaded_sample_1 = (model.codec.config.sample_rate, sample_1_audio.flatten().numpy()) | |
print("Sample 1 preloaded successfully!") | |
print("Models ready for inference!") | |
# Sample texts for quick testing - keeping original examples intact | |
SAMPLE_TEXTS = [ | |
"""Welcome to Fluxions, the podcast where... we uh explore how technology is shaping the world around us. I'm your host, Alex. | |
[breath] And I'm Jamie um [laugh] today, we're diving into a [hesitate] topic that's transforming customer service uh voice technology for agents. | |
That's right. We're [hesitate] talking about the AI-driven tools that are making those long, frustrating customer service calls a little more bearable, for both the customer and the agents.""", | |
"""Um, hey Sarah, so I just left the meeting with the, uh, rabbit focus group and they are absolutely loving the new heritage carrots! Like, I've never seen such enthusiastic thumping in my life! The purple ones are testing through the roof - apparently the flavor profile is just amazing - and they're willing to pay a premium for them! We need to, like, triple production on those immediately and maybe consider a subscription model? Anyway, gotta go, but let's touch base tomorrow about scaling this before the Easter rush hits!""", | |
"""What an absolute joke, like I'm really not enjoying this situation where I'm just forced to say things.""", | |
""" So [breath] I don't know if you've been there [breath] but I'm really pissed off. | |
Oh no! Why, what happened? | |
Well I went to this cafe hearth, and they gave me the worst toastie I've ever had, it didn't come with salad it was just raw. | |
Well that's awful what kind of toastie was it? | |
It was supposed to be a chicken bacon lettuce tomatoe, but it was fucking shite, like really bad and I honestly would have preferred to eat my own shit. | |
[laugh] well, it must have been awful for you, I'm sorry to hear that, why don't we move on to brighter topics, like the good old weather?""", | |
] | |
def text_to_speech(text, temperature=0.5, top_k=100, top_p=None, max_duration=60): | |
""" | |
Convert text to speech using the current Vui model | |
Args: | |
text (str): Input text to convert to speech | |
temperature (float): Sampling temperature (0.1-1.0) | |
top_k (int): Top-k sampling parameter | |
top_p (float): Top-p sampling parameter (None to disable) | |
max_duration (int): Maximum audio duration in seconds | |
Returns: | |
tuple: (sample_rate, audio_array) for Gradio audio output | |
""" | |
if not text.strip(): | |
return None, "Please enter some text to convert to speech." | |
if current_model is None: | |
return None, "No model loaded. Please select a model first." | |
print(f"Generating speech for: {text[:50]}... using model {current_model_name}") | |
# Generate speech using render | |
t1 = time.perf_counter() | |
result = render( | |
current_model, | |
text.strip(), | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
max_secs=max_duration, | |
) | |
# Long text: render returns (codes, text, audio) tuple | |
waveform = result | |
# waveform is already decoded audio from generate_infinite | |
waveform = waveform.cpu() | |
sr = current_model.codec.config.sample_rate | |
# Calculate generation speed | |
generation_time = time.perf_counter() - t1 | |
audio_duration = waveform.shape[-1] / sr | |
speed_factor = audio_duration / generation_time | |
# Trim end artifacts if needed | |
if waveform.shape[-1] > 2000: | |
waveform = waveform[..., :-2000] | |
# Convert to numpy array for Gradio | |
audio_array = waveform.flatten().numpy() | |
info = f"Generated {audio_duration:.1f}s of audio in {generation_time:.1f}s ({speed_factor:.1f}x realtime) with {current_model_name}" | |
print(info) | |
return (sr, audio_array), info | |
def change_model(model_name): | |
"""Change the active model and return status""" | |
try: | |
load_and_warm_model(model_name) | |
return f"Successfully loaded and warmed up model: {model_name}" | |
except Exception as e: | |
return f"Error loading model {model_name}: {str(e)}" | |
def load_sample_text(sample_index): | |
"""Load a sample text for quick testing""" | |
if 0 <= sample_index < len(SAMPLE_TEXTS): | |
return SAMPLE_TEXTS[sample_index] | |
return "" | |
# added by on1onmangoes at Tue Jan 10 to make into claude mcp server | |
# MCP Server Functions - Add these after your existing functions | |
def generate_podcast_audio_mcp(text, temperature=0.5, top_k=100, max_duration=60): | |
""" | |
Generate podcast-style audio from text using AI voice synthesis. | |
Args: | |
text: The podcast script or text to convert to speech | |
temperature: Voice variation (0.1-1.0, higher = more varied) | |
top_k: Top-k sampling parameter (1-200) | |
max_duration: Maximum audio duration in seconds | |
Returns: | |
String with audio generation status and metadata | |
""" | |
if not text.strip(): | |
return "Error: Please provide text to convert to speech" | |
if current_model is None: | |
return "Error: No voice model loaded" | |
try: | |
# Use your existing text_to_speech function | |
audio_result, info = text_to_speech(text, temperature, top_k, None, max_duration) | |
if audio_result is None: | |
return f"Error: {info}" | |
sample_rate, audio_array = audio_result | |
duration = len(audio_array) / sample_rate | |
return f"✅ Generated {duration:.1f}s of podcast audio successfully. {info}" | |
except Exception as e: | |
return f"Error generating podcast audio: {str(e)}" | |
def get_podcast_samples_mcp(): | |
""" | |
Get sample podcast texts that can be used for audio generation. | |
Returns: | |
String with formatted sample podcast scripts | |
""" | |
samples_info = [] | |
for i, sample in enumerate(SAMPLE_TEXTS): | |
samples_info.append(f"**Sample {i+1}:** {sample[:100]}...") | |
return "Available podcast samples:\n\n" + "\n\n".join(samples_info) | |
def get_full_podcast_sample_mcp(sample_number): | |
""" | |
Get the full text of a specific podcast sample. | |
Args: | |
sample_number: Sample number (1-4) | |
Returns: | |
Full text of the requested sample | |
""" | |
try: | |
index = int(sample_number) - 1 | |
if 0 <= index < len(SAMPLE_TEXTS): | |
return f"Sample {sample_number} full text:\n\n{SAMPLE_TEXTS[index]}" | |
else: | |
return f"Error: Sample {sample_number} not found. Available samples: 1-{len(SAMPLE_TEXTS)}" | |
except ValueError: | |
return "Error: Please provide a valid sample number (1-4)" | |
def change_voice_model_mcp(model_name): | |
""" | |
Change the active voice model for podcast generation. | |
Args: | |
model_name: Name of the voice model to load (currently only COHOST available) | |
Returns: | |
Status message indicating success or failure | |
""" | |
try: | |
if model_name not in AVAILABLE_MODELS: | |
available = ", ".join(AVAILABLE_MODELS.keys()) | |
return f"Error: Model '{model_name}' not available. Available models: {available}" | |
status = change_model(model_name) | |
return status | |
except Exception as e: | |
return f"Error changing model: {str(e)}" | |
def get_voice_models_info_mcp(): | |
""" | |
Get information about available voice models. | |
Returns: | |
String with available voice models and current model status | |
""" | |
available = ", ".join(AVAILABLE_MODELS.keys()) | |
current = current_model_name if current_model_name else "Unknown" | |
return f"Available voice models: {available}\nCurrently loaded: {current}" | |
# Create Gradio interfacegr | |
with gr.Blocks( | |
title="Vui", | |
theme=gr.themes.Soft(), | |
head=""" | |
<script> | |
document.addEventListener('DOMContentLoaded', function() { | |
// Add keyboard shortcuts | |
document.addEventListener('keydown', function(e) { | |
// Ctrl/Cmd + Enter to generate (but not when Shift is pressed) | |
if ((e.ctrlKey) && e.key === 'Enter' && !e.shiftKey) { | |
e.preventDefault(); | |
const generateBtn = document.querySelector('button[variant="primary"]'); | |
if (generateBtn && !generateBtn.disabled) { | |
generateBtn.click(); | |
} | |
} | |
else if ((e.ctrlKey) && e.code === 'Space') { | |
e.preventDefault(); | |
const audioElement = document.querySelector('audio'); | |
if (audioElement) { | |
if (audioElement.paused) { | |
audioElement.play(); | |
} else { | |
audioElement.pause(); | |
} | |
} | |
} | |
}); | |
// Auto-play audio when it's updated | |
const observer = new MutationObserver(function(mutations) { | |
mutations.forEach(function(mutation) { | |
if (mutation.type === 'childList') { | |
const audioElements = document.querySelectorAll('audio'); | |
audioElements.forEach(function(audio) { | |
if (audio.src && !audio.dataset.hasAutoplayListener) { | |
audio.dataset.hasAutoplayListener = 'true'; | |
audio.addEventListener('loadeddata', function() { | |
// Small delay to ensure audio is ready | |
setTimeout(() => { | |
audio.play().catch(e => { | |
console.log('Autoplay prevented by browser:', e); | |
}); | |
}, 100); | |
}); | |
} | |
}); | |
} | |
}); | |
}); | |
observer.observe(document.body, { | |
childList: true, | |
subtree: true | |
}); | |
}); | |
</script> | |
""", | |
) as demo: | |
gr.Markdown( | |
"**Keyboard Shortcuts:** `Ctrl + Enter` to generate` or Ctrl + Space to pause" | |
) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
# Model selector | |
model_dropdown = gr.Dropdown( | |
choices=list(AVAILABLE_MODELS.keys()), | |
value=default_model, | |
label=None, | |
info="Select a voice model", | |
) | |
# Model status | |
model_status = gr.Textbox( | |
label=None, | |
value=f"Model {default_model} loaded and ready", | |
interactive=False, | |
lines=1, | |
) | |
# Text input | |
text_input = gr.Textbox( | |
label=None, | |
placeholder="Enter the text you want to convert to speech...", | |
lines=5, | |
max_lines=10, | |
) | |
with gr.Column(scale=1): | |
# Audio output with autoplay | |
audio_output = gr.Audio( | |
label="Generated Speech", type="numpy", autoplay=True # Enable autoplay | |
) | |
# Info output | |
info_output = gr.Textbox( | |
label="Generation Info", lines=3, interactive=False | |
) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
# Sample text buttons | |
gr.Markdown("**Quick samples:**") | |
with gr.Row(): | |
sample_btns = [] | |
for i, sample in enumerate(SAMPLE_TEXTS): | |
btn = gr.Button(f"Sample {i+1}", size="sm") | |
if i == 0: # Sample 1 (index 0) - use preloaded audio | |
def load_preloaded_sample_1(): | |
return ( | |
SAMPLE_TEXTS[0], | |
preloaded_sample_1, | |
"Preloaded sample 1 audio", | |
) | |
btn.click( | |
fn=load_preloaded_sample_1, | |
outputs=[text_input, audio_output, info_output], | |
) | |
else: | |
btn.click( | |
fn=lambda idx=i: SAMPLE_TEXTS[idx], outputs=text_input | |
) | |
# Generation parameters | |
with gr.Accordion("Advanced Settings", open=False): | |
temperature = gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.5, | |
step=0.1, | |
label="Temperature", | |
info="Higher values = more varied speech", | |
) | |
top_k = gr.Slider( | |
minimum=1, | |
maximum=200, | |
value=100, | |
step=1, | |
label="Top-K", | |
info="Number of top tokens to consider", | |
) | |
use_top_p = gr.Checkbox(label="Use Top-P sampling", value=False) | |
top_p = gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.9, | |
step=0.05, | |
label="Top-P", | |
info="Cumulative probability threshold", | |
visible=False, | |
) | |
max_duration = gr.Slider( | |
minimum=5, | |
maximum=120, | |
value=60, | |
step=5, | |
label="Max Duration (seconds)", | |
info="Maximum length of generated audio", | |
) | |
# Show/hide top_p based on checkbox | |
use_top_p.change( | |
fn=lambda x: gr.update(visible=x), inputs=use_top_p, outputs=top_p | |
) | |
# Generate button | |
generate_btn = gr.Button("🎵 Generate Speech", variant="primary", size="lg") | |
# Examples section | |
gr.Markdown("## 📝 Example Texts") | |
with gr.Accordion("View example texts", open=False): | |
for i, sample in enumerate(SAMPLE_TEXTS): | |
gr.Markdown(f"**Sample {i+1}:** {sample}") | |
# Connect the model change function | |
model_dropdown.change(fn=change_model, inputs=model_dropdown, outputs=model_status) | |
# Connect the generate function | |
def generate_wrapper(text, temp, k, use_p, p, duration): | |
top_p_val = p if use_p else None | |
return text_to_speech(text, temp, k, top_p_val, duration) | |
generate_btn.click( | |
fn=generate_wrapper, | |
inputs=[text_input, temperature, top_k, use_top_p, top_p, max_duration], | |
outputs=[audio_output, info_output], | |
) | |
# Also allow Enter key to generate | |
text_input.submit( | |
fn=generate_wrapper, | |
inputs=[text_input, temperature, top_k, use_top_p, top_p, max_duration], | |
outputs=[audio_output, info_output], | |
) | |
# Auto-load sample 1 on startup | |
demo.load( | |
fn=lambda: ( | |
SAMPLE_TEXTS[0], | |
preloaded_sample_1, | |
"Sample 1 preloaded and ready!", | |
), | |
outputs=[text_input, audio_output, info_output], | |
) | |
demo.launch() | |