vui-space / app.py
on1onmangoes's picture
Update app.py
3d6c429 verified
raw
history blame
17.5 kB
import time
import spaces
import gradio as gr
import torch
from vui.inference import render
from vui.model import Vui
def get_available_models():
"""Extract all CAPs static variables from Vui class that end with .pt"""
models = {}
for attr_name in dir(Vui):
if attr_name.isupper():
attr_value = getattr(Vui, attr_name)
if isinstance(attr_value, str) and attr_value.endswith(".pt"):
models[attr_name] = attr_value
return models
# AVAILABLE_MODELS = get_available_models()
AVAILABLE_MODELS = {"COHOST": Vui.COHOST}
print(f"Available models: {list(AVAILABLE_MODELS.keys())}")
current_model = None
current_model_name = None
def load_and_warm_model(model_name):
"""Load and warm up a specific model"""
global current_model, current_model_name
if current_model_name == model_name and current_model is not None:
print(f"Model {model_name} already loaded and warmed up!")
return current_model
print(f"Loading model {model_name}...")
model_path = AVAILABLE_MODELS[model_name]
model = Vui.from_pretrained_inf(model_path).cuda()
print(f"Compiling model {model_name}...")
# model.decoder = torch.compile(model.decoder, fullgraph=True)
print(f"Warming up model {model_name}...")
warmup_text = "Hello, this is a test. Let's say some random shizz"
render(
model,
warmup_text,
max_secs=10,
)
current_model = model
current_model_name = model_name
print(f"Model {model_name} loaded and warmed up successfully!")
return model
# Load default model (COHOST)
default_model = (
"COHOST" if "COHOST" in AVAILABLE_MODELS else list(AVAILABLE_MODELS.keys())[0]
)
model = load_and_warm_model(default_model)
# Preload sample 1 (index 0) with current model
print("Preloading sample 1...")
sample_1_text = """Welcome to Fluxions, the podcast where... we uh explore how technology is shaping the world around us. I'm your host, Alex.
[breath] And I'm Jamie um [laugh] today, we're diving into a [hesitate] topic that's transforming customer service uh voice technology for agents.
That's right. We're [hesitate] talking about the AI-driven tools that are making those long, frustrating customer service calls a little more bearable, for both the customer and the agents."""
sample_1_audio = render(
current_model,
sample_1_text,
)
sample_1_audio = sample_1_audio.cpu()
sample_1_audio = sample_1_audio[..., :-2000] # Trim end artifacts
preloaded_sample_1 = (model.codec.config.sample_rate, sample_1_audio.flatten().numpy())
print("Sample 1 preloaded successfully!")
print("Models ready for inference!")
# Sample texts for quick testing - keeping original examples intact
SAMPLE_TEXTS = [
"""Welcome to Fluxions, the podcast where... we uh explore how technology is shaping the world around us. I'm your host, Alex.
[breath] And I'm Jamie um [laugh] today, we're diving into a [hesitate] topic that's transforming customer service uh voice technology for agents.
That's right. We're [hesitate] talking about the AI-driven tools that are making those long, frustrating customer service calls a little more bearable, for both the customer and the agents.""",
"""Um, hey Sarah, so I just left the meeting with the, uh, rabbit focus group and they are absolutely loving the new heritage carrots! Like, I've never seen such enthusiastic thumping in my life! The purple ones are testing through the roof - apparently the flavor profile is just amazing - and they're willing to pay a premium for them! We need to, like, triple production on those immediately and maybe consider a subscription model? Anyway, gotta go, but let's touch base tomorrow about scaling this before the Easter rush hits!""",
"""What an absolute joke, like I'm really not enjoying this situation where I'm just forced to say things.""",
""" So [breath] I don't know if you've been there [breath] but I'm really pissed off.
Oh no! Why, what happened?
Well I went to this cafe hearth, and they gave me the worst toastie I've ever had, it didn't come with salad it was just raw.
Well that's awful what kind of toastie was it?
It was supposed to be a chicken bacon lettuce tomatoe, but it was fucking shite, like really bad and I honestly would have preferred to eat my own shit.
[laugh] well, it must have been awful for you, I'm sorry to hear that, why don't we move on to brighter topics, like the good old weather?""",
]
@spaces.GPU(duration=30)
def text_to_speech(text, temperature=0.5, top_k=100, top_p=None, max_duration=60):
"""
Convert text to speech using the current Vui model
Args:
text (str): Input text to convert to speech
temperature (float): Sampling temperature (0.1-1.0)
top_k (int): Top-k sampling parameter
top_p (float): Top-p sampling parameter (None to disable)
max_duration (int): Maximum audio duration in seconds
Returns:
tuple: (sample_rate, audio_array) for Gradio audio output
"""
if not text.strip():
return None, "Please enter some text to convert to speech."
if current_model is None:
return None, "No model loaded. Please select a model first."
print(f"Generating speech for: {text[:50]}... using model {current_model_name}")
# Generate speech using render
t1 = time.perf_counter()
result = render(
current_model,
text.strip(),
temperature=temperature,
top_k=top_k,
top_p=top_p,
max_secs=max_duration,
)
# Long text: render returns (codes, text, audio) tuple
waveform = result
# waveform is already decoded audio from generate_infinite
waveform = waveform.cpu()
sr = current_model.codec.config.sample_rate
# Calculate generation speed
generation_time = time.perf_counter() - t1
audio_duration = waveform.shape[-1] / sr
speed_factor = audio_duration / generation_time
# Trim end artifacts if needed
if waveform.shape[-1] > 2000:
waveform = waveform[..., :-2000]
# Convert to numpy array for Gradio
audio_array = waveform.flatten().numpy()
info = f"Generated {audio_duration:.1f}s of audio in {generation_time:.1f}s ({speed_factor:.1f}x realtime) with {current_model_name}"
print(info)
return (sr, audio_array), info
def change_model(model_name):
"""Change the active model and return status"""
try:
load_and_warm_model(model_name)
return f"Successfully loaded and warmed up model: {model_name}"
except Exception as e:
return f"Error loading model {model_name}: {str(e)}"
def load_sample_text(sample_index):
"""Load a sample text for quick testing"""
if 0 <= sample_index < len(SAMPLE_TEXTS):
return SAMPLE_TEXTS[sample_index]
return ""
# added by on1onmangoes at Tue Jan 10 to make into claude mcp server
# MCP Server Functions - Add these after your existing functions
def generate_podcast_audio_mcp(text, temperature=0.5, top_k=100, max_duration=60):
"""
Generate podcast-style audio from text using AI voice synthesis.
Args:
text: The podcast script or text to convert to speech
temperature: Voice variation (0.1-1.0, higher = more varied)
top_k: Top-k sampling parameter (1-200)
max_duration: Maximum audio duration in seconds
Returns:
String with audio generation status and metadata
"""
if not text.strip():
return "Error: Please provide text to convert to speech"
if current_model is None:
return "Error: No voice model loaded"
try:
# Use your existing text_to_speech function
audio_result, info = text_to_speech(text, temperature, top_k, None, max_duration)
if audio_result is None:
return f"Error: {info}"
sample_rate, audio_array = audio_result
duration = len(audio_array) / sample_rate
return f"✅ Generated {duration:.1f}s of podcast audio successfully. {info}"
except Exception as e:
return f"Error generating podcast audio: {str(e)}"
def get_podcast_samples_mcp():
"""
Get sample podcast texts that can be used for audio generation.
Returns:
String with formatted sample podcast scripts
"""
samples_info = []
for i, sample in enumerate(SAMPLE_TEXTS):
samples_info.append(f"**Sample {i+1}:** {sample[:100]}...")
return "Available podcast samples:\n\n" + "\n\n".join(samples_info)
def get_full_podcast_sample_mcp(sample_number):
"""
Get the full text of a specific podcast sample.
Args:
sample_number: Sample number (1-4)
Returns:
Full text of the requested sample
"""
try:
index = int(sample_number) - 1
if 0 <= index < len(SAMPLE_TEXTS):
return f"Sample {sample_number} full text:\n\n{SAMPLE_TEXTS[index]}"
else:
return f"Error: Sample {sample_number} not found. Available samples: 1-{len(SAMPLE_TEXTS)}"
except ValueError:
return "Error: Please provide a valid sample number (1-4)"
def change_voice_model_mcp(model_name):
"""
Change the active voice model for podcast generation.
Args:
model_name: Name of the voice model to load (currently only COHOST available)
Returns:
Status message indicating success or failure
"""
try:
if model_name not in AVAILABLE_MODELS:
available = ", ".join(AVAILABLE_MODELS.keys())
return f"Error: Model '{model_name}' not available. Available models: {available}"
status = change_model(model_name)
return status
except Exception as e:
return f"Error changing model: {str(e)}"
def get_voice_models_info_mcp():
"""
Get information about available voice models.
Returns:
String with available voice models and current model status
"""
available = ", ".join(AVAILABLE_MODELS.keys())
current = current_model_name if current_model_name else "Unknown"
return f"Available voice models: {available}\nCurrently loaded: {current}"
# Create Gradio interfacegr
with gr.Blocks(
title="Vui",
theme=gr.themes.Soft(),
head="""
<script>
document.addEventListener('DOMContentLoaded', function() {
// Add keyboard shortcuts
document.addEventListener('keydown', function(e) {
// Ctrl/Cmd + Enter to generate (but not when Shift is pressed)
if ((e.ctrlKey) && e.key === 'Enter' && !e.shiftKey) {
e.preventDefault();
const generateBtn = document.querySelector('button[variant="primary"]');
if (generateBtn && !generateBtn.disabled) {
generateBtn.click();
}
}
else if ((e.ctrlKey) && e.code === 'Space') {
e.preventDefault();
const audioElement = document.querySelector('audio');
if (audioElement) {
if (audioElement.paused) {
audioElement.play();
} else {
audioElement.pause();
}
}
}
});
// Auto-play audio when it's updated
const observer = new MutationObserver(function(mutations) {
mutations.forEach(function(mutation) {
if (mutation.type === 'childList') {
const audioElements = document.querySelectorAll('audio');
audioElements.forEach(function(audio) {
if (audio.src && !audio.dataset.hasAutoplayListener) {
audio.dataset.hasAutoplayListener = 'true';
audio.addEventListener('loadeddata', function() {
// Small delay to ensure audio is ready
setTimeout(() => {
audio.play().catch(e => {
console.log('Autoplay prevented by browser:', e);
});
}, 100);
});
}
});
}
});
});
observer.observe(document.body, {
childList: true,
subtree: true
});
});
</script>
""",
) as demo:
gr.Markdown(
"**Keyboard Shortcuts:** `Ctrl + Enter` to generate` or Ctrl + Space to pause"
)
with gr.Row():
with gr.Column(scale=2):
# Model selector
model_dropdown = gr.Dropdown(
choices=list(AVAILABLE_MODELS.keys()),
value=default_model,
label=None,
info="Select a voice model",
)
# Model status
model_status = gr.Textbox(
label=None,
value=f"Model {default_model} loaded and ready",
interactive=False,
lines=1,
)
# Text input
text_input = gr.Textbox(
label=None,
placeholder="Enter the text you want to convert to speech...",
lines=5,
max_lines=10,
)
with gr.Column(scale=1):
# Audio output with autoplay
audio_output = gr.Audio(
label="Generated Speech", type="numpy", autoplay=True # Enable autoplay
)
# Info output
info_output = gr.Textbox(
label="Generation Info", lines=3, interactive=False
)
with gr.Row():
with gr.Column(scale=2):
# Sample text buttons
gr.Markdown("**Quick samples:**")
with gr.Row():
sample_btns = []
for i, sample in enumerate(SAMPLE_TEXTS):
btn = gr.Button(f"Sample {i+1}", size="sm")
if i == 0: # Sample 1 (index 0) - use preloaded audio
def load_preloaded_sample_1():
return (
SAMPLE_TEXTS[0],
preloaded_sample_1,
"Preloaded sample 1 audio",
)
btn.click(
fn=load_preloaded_sample_1,
outputs=[text_input, audio_output, info_output],
)
else:
btn.click(
fn=lambda idx=i: SAMPLE_TEXTS[idx], outputs=text_input
)
# Generation parameters
with gr.Accordion("Advanced Settings", open=False):
temperature = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.5,
step=0.1,
label="Temperature",
info="Higher values = more varied speech",
)
top_k = gr.Slider(
minimum=1,
maximum=200,
value=100,
step=1,
label="Top-K",
info="Number of top tokens to consider",
)
use_top_p = gr.Checkbox(label="Use Top-P sampling", value=False)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.05,
label="Top-P",
info="Cumulative probability threshold",
visible=False,
)
max_duration = gr.Slider(
minimum=5,
maximum=120,
value=60,
step=5,
label="Max Duration (seconds)",
info="Maximum length of generated audio",
)
# Show/hide top_p based on checkbox
use_top_p.change(
fn=lambda x: gr.update(visible=x), inputs=use_top_p, outputs=top_p
)
# Generate button
generate_btn = gr.Button("🎵 Generate Speech", variant="primary", size="lg")
# Examples section
gr.Markdown("## 📝 Example Texts")
with gr.Accordion("View example texts", open=False):
for i, sample in enumerate(SAMPLE_TEXTS):
gr.Markdown(f"**Sample {i+1}:** {sample}")
# Connect the model change function
model_dropdown.change(fn=change_model, inputs=model_dropdown, outputs=model_status)
# Connect the generate function
def generate_wrapper(text, temp, k, use_p, p, duration):
top_p_val = p if use_p else None
return text_to_speech(text, temp, k, top_p_val, duration)
generate_btn.click(
fn=generate_wrapper,
inputs=[text_input, temperature, top_k, use_top_p, top_p, max_duration],
outputs=[audio_output, info_output],
)
# Also allow Enter key to generate
text_input.submit(
fn=generate_wrapper,
inputs=[text_input, temperature, top_k, use_top_p, top_p, max_duration],
outputs=[audio_output, info_output],
)
# Auto-load sample 1 on startup
demo.load(
fn=lambda: (
SAMPLE_TEXTS[0],
preloaded_sample_1,
"Sample 1 preloaded and ready!",
),
outputs=[text_input, audio_output, info_output],
)
demo.launch()