Spaces:
Running
Running
File size: 49,666 Bytes
9455ec6 fb6ca91 325c300 9455ec6 06ed069 9455ec6 c9b451d 277fd87 cecf5f5 fb6ca91 277fd87 dcff188 277fd87 2be7c39 277fd87 2be7c39 277fd87 2be7c39 d8f172b 277fd87 2be7c39 277fd87 2be7c39 277fd87 2be7c39 277fd87 2be7c39 277fd87 d88cede 277fd87 2be7c39 277fd87 2be7c39 277fd87 2be7c39 277fd87 2be7c39 277fd87 2be7c39 277fd87 2be7c39 277fd87 500a9cd 277fd87 500a9cd 277fd87 d8f172b 277fd87 d8f172b 277fd87 01074ec 277fd87 d8f172b 277fd87 d8f172b 277fd87 7b16b97 277fd87 7b16b97 277fd87 9455ec6 fb6ca91 e34c744 41099ef fb6ca91 277fd87 cecf5f5 277fd87 325c300 277fd87 9455ec6 277fd87 325c300 277fd87 9455ec6 d88cede 325c300 277fd87 7b16b97 277fd87 d8f172b 325c300 277fd87 325c300 277fd87 325c300 277fd87 cecf5f5 277fd87 7b16b97 277fd87 7b16b97 277fd87 7b16b97 277fd87 7b16b97 277fd87 9455ec6 277fd87 d88cede 277fd87 d88cede 277fd87 d88cede 277fd87 325c300 277fd87 776c727 277fd87 9455ec6 6f155ab 9455ec6 277fd87 9455ec6 2e8f390 d9f7926 2e8f390 9455ec6 57f0f2b 9455ec6 277fd87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 |
import pandas as pd
import matplotlib.pyplot as plt
import gradio as gr
import tempfile
import os
from datetime import datetime
from statsforecast import StatsForecast
from statsforecast.models import (
HistoricAverage,
Naive,
SeasonalNaive,
WindowAverage,
SeasonalWindowAverage,
AutoETS,
AutoARIMA
)
from utilsforecast.evaluation import evaluate
from utilsforecast.losses import *
# Import for TimeGPT
from nixtla import NixtlaClient
# Function to load and process uploaded CSV
def load_data(file):
if file is None:
return None, "Please upload a CSV file"
try:
df = pd.read_csv(file)
required_cols = ['unique_id', 'ds', 'y']
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
return None, f"Missing required columns: {', '.join(missing_cols)}"
df['ds'] = pd.to_datetime(df['ds'])
df = df[required_cols]
df = df.sort_values(['unique_id', 'ds']).reset_index(drop=True)
# Check for NaN values
if df['y'].isna().any():
return None, "Data contains missing values in the 'y' column"
return df, "Data loaded successfully!"
except Exception as e:
return None, f"Error loading data: {str(e)}"
# Helper function to calculate date offset based on frequency and horizon
def calculate_date_offset(freq, horizon):
"""Calculate a timedelta based on frequency code and horizon"""
if freq == 'H':
return pd.Timedelta(hours=horizon)
elif freq == 'D':
return pd.Timedelta(days=horizon)
elif freq == 'B':
# For business days, use approximately 1.4x multiplier to account for weekends
return pd.Timedelta(days=int(horizon * 1.4))
elif freq == 'WS':
return pd.Timedelta(weeks=horizon)
elif freq == 'MS':
return pd.Timedelta(days=horizon * 30) # Approximate
elif freq == 'QS':
return pd.Timedelta(days=horizon * 90) # Approximate
elif freq == 'YS':
return pd.Timedelta(days=horizon * 365) # Approximate
else:
# Default fallback
return pd.Timedelta(days=horizon)
# Function to generate and return a plot for validation results
def create_forecast_plot(forecast_df, original_df, title="Forecasting Results", horizon=None, freq='D'):
plt.figure(figsize=(12, 7))
unique_ids = forecast_df['unique_id'].unique()
forecast_cols = [col for col in forecast_df.columns if col not in ['unique_id', 'ds', 'cutoff', 'y']]
colors = plt.cm.tab10.colors
# Track min and max dates for x-axis limits
min_cutoff = None
for i, unique_id in enumerate(unique_ids):
original_data = original_df[original_df['unique_id'] == unique_id]
plt.plot(original_data['ds'], original_data['y'], 'k-', linewidth=2, label=f'{unique_id} (Actual)')
forecast_data = forecast_df[forecast_df['unique_id'] == unique_id]
# Find the earliest cutoff date if available
if 'cutoff' in forecast_data.columns:
cutoffs = pd.to_datetime(forecast_data['cutoff'].unique())
if len(cutoffs) > 0:
earliest_cutoff = cutoffs.min()
if min_cutoff is None or earliest_cutoff < min_cutoff:
min_cutoff = earliest_cutoff
# Add vertical line at each cutoff
for cutoff in cutoffs:
plt.axvline(x=cutoff, color='gray', linestyle='--', alpha=0.4)
# Plot main prediction lines
for j, col in enumerate(forecast_cols):
if col in forecast_data.columns:
# Clean up model name for legend
model_name = col.replace('_', ' ').title()
if model_name == 'Timegpt':
model_name = 'TimeGPT'
plt.plot(forecast_data['ds'], forecast_data[col],
color=colors[j % len(colors)],
linestyle='--',
linewidth=1.5,
label=f'{model_name}')
plt.title(title, fontsize=16)
plt.xlabel('Date', fontsize=12)
plt.ylabel('Value', fontsize=12)
plt.grid(True, alpha=0.3)
# Better legend with smaller font and outside placement
plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), ncol=3, fontsize=10)
plt.tight_layout(rect=[0, 0.05, 1, 0.95]) # Adjust layout to make room for legend
# Set x-axis limits based on cutoff and horizon
if min_cutoff is not None and horizon is not None:
# Calculate date offset based on frequency and horizon
date_offset = calculate_date_offset(freq, horizon)
# Calculate start date as 'horizon' units before the first cutoff
start_date = min_cutoff - date_offset
# Find max date from forecast
max_date = forecast_df['ds'].max()
plt.xlim(start_date, max_date)
# Add an annotation for the training/test split
plt.annotate('Training | Test',
xy=(min_cutoff, plt.ylim()[0]),
xytext=(0, -40),
textcoords='offset points',
horizontalalignment='center',
fontsize=10)
# Format date labels better
fig = plt.gcf()
ax = plt.gca()
fig.autofmt_xdate()
return fig
# Function to create a plot for future forecasts
def create_future_forecast_plot(forecast_df, original_df, horizon=None, freq='D'):
plt.figure(figsize=(12, 7))
unique_ids = forecast_df['unique_id'].unique()
forecast_cols = [col for col in forecast_df.columns if col not in ['unique_id', 'ds']]
colors = plt.cm.tab10.colors
# Track the forecast start date (min of forecast data)
forecast_start = None
if not forecast_df.empty:
forecast_start = pd.to_datetime(forecast_df['ds'].min())
for i, unique_id in enumerate(unique_ids):
# Plot historical data
original_data = original_df[original_df['unique_id'] == unique_id]
plt.plot(original_data['ds'], original_data['y'], 'k-', linewidth=2, label=f'{unique_id} (Historical)')
# Plot forecast data with shaded vertical line separator
forecast_data = forecast_df[forecast_df['unique_id'] == unique_id]
# Add vertical line at the forecast start
if not forecast_data.empty and not original_data.empty:
forecast_start = forecast_data['ds'].min()
plt.axvline(x=forecast_start, color='gray', linestyle='--', alpha=0.5)
# Add a shaded area for the forecast period
plt.axvspan(forecast_start, forecast_data['ds'].max(), alpha=0.1, color='blue')
# Annotate the split point
plt.annotate('Historical | Forecast',
xy=(forecast_start, plt.ylim()[0]),
xytext=(0, -40),
textcoords='offset points',
horizontalalignment='center',
fontsize=10)
# Plot main prediction lines
for j, col in enumerate(forecast_cols):
if col in forecast_data.columns:
# Clean up model name for legend
model_name = col.replace('_', ' ').title()
if model_name == 'Timegpt':
model_name = 'TimeGPT'
plt.plot(forecast_data['ds'], forecast_data[col],
color=colors[j % len(colors)],
linestyle='--',
linewidth=1.5,
label=f'{model_name}')
plt.title('Future Forecast', fontsize=16)
plt.xlabel('Date', fontsize=12)
plt.ylabel('Value', fontsize=12)
plt.grid(True, alpha=0.3)
# Better legend with smaller font and outside placement
plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), ncol=3, fontsize=10)
plt.tight_layout(rect=[0, 0.05, 1, 0.95]) # Adjust layout to make room for legend
# Set x-axis limits based on forecast start and horizon
if forecast_start is not None and horizon is not None:
# Calculate date offset based on frequency and horizon
date_offset = calculate_date_offset(freq, horizon)
# Calculate start date as 'horizon' units before the forecast start
start_date = forecast_start - date_offset
# Get the last date from historical data that's before or at the start_date
historical_dates = pd.to_datetime(original_df['ds'])
historical_dates_before_start = historical_dates[historical_dates <= start_date]
if not historical_dates_before_start.empty:
# Use the last available date in the historical data that's before our calculated start_date
adjusted_start_date = historical_dates_before_start.max()
else:
# Fallback to using the original start_date
adjusted_start_date = start_date
# Set the x-axis limits
plt.xlim(adjusted_start_date, forecast_df['ds'].max())
# Format date labels better
fig = plt.gcf()
ax = plt.gca()
fig.autofmt_xdate()
return fig
# Function to export results to CSV
def export_results(eval_df, cv_results, future_forecasts):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# Create temp directory if it doesn't exist
temp_dir = tempfile.mkdtemp()
result_files = []
if eval_df is not None:
eval_path = os.path.join(temp_dir, f"evaluation_metrics_{timestamp}.csv")
eval_df.to_csv(eval_path, index=False)
result_files.append(eval_path)
if cv_results is not None:
cv_path = os.path.join(temp_dir, f"cross_validation_results_{timestamp}.csv")
cv_results.to_csv(cv_path, index=False)
result_files.append(cv_path)
if future_forecasts is not None:
forecast_path = os.path.join(temp_dir, f"forecasts_{timestamp}.csv")
future_forecasts.to_csv(forecast_path, index=False)
result_files.append(forecast_path)
return result_files
# Main forecasting logic
def run_forecast(
file,
frequency,
eval_strategy,
horizon,
step_size,
num_windows,
use_historical_avg,
use_naive,
use_seasonal_naive,
seasonality,
use_window_avg,
window_size,
use_seasonal_window_avg,
seasonal_window_size,
use_autoets,
use_autoarima,
use_timegpt,
finetune_loss,
confidence_level,
future_horizon
):
df, message = load_data(file)
if df is None:
return None, None, None, None, None, None, message
# Initialize results
eval_df = None
cv_results = None
future_forecasts = None
# Set up traditional statistical models
models = []
model_aliases = []
if use_historical_avg:
models.append(HistoricAverage(alias='historical_average'))
model_aliases.append('historical_average')
if use_naive:
models.append(Naive(alias='naive'))
model_aliases.append('naive')
if use_seasonal_naive:
models.append(SeasonalNaive(season_length=seasonality, alias='seasonal_naive'))
model_aliases.append('seasonal_naive')
if use_window_avg:
models.append(WindowAverage(window_size=window_size, alias='window_average'))
model_aliases.append('window_average')
if use_seasonal_window_avg:
models.append(SeasonalWindowAverage(season_length=seasonality, window_size=seasonal_window_size, alias='seasonal_window_average'))
model_aliases.append('seasonal_window_average')
if use_autoets:
models.append(AutoETS(alias='autoets', season_length=seasonality))
model_aliases.append('autoets')
if use_autoarima:
models.append(AutoARIMA(alias='autoarima', season_length=seasonality))
model_aliases.append('autoarima')
if not models and not use_timegpt:
return None, None, None, None, None, None, "Please select at least one forecasting model"
try:
# Initialize results with empty DataFrames
combined_eval_df = pd.DataFrame()
combined_cv_results = pd.DataFrame()
combined_future_forecasts = pd.DataFrame()
# Run traditional statistical models if any are selected
if models:
sf = StatsForecast(models=models, freq=frequency, n_jobs=-1)
# Run cross-validation for traditional models
if eval_strategy == "Cross Validation":
cv_results = sf.cross_validation(df=df, h=horizon, step_size=step_size, n_windows=num_windows)
evaluation = evaluate(df=cv_results, metrics=[bias, mae, rmse, mape], models=model_aliases)
eval_df = pd.DataFrame(evaluation).reset_index()
eval_df = eval_df.round({col: 2 for col in eval_df.columns[3:]})
else: # Fixed window
cv_results = sf.cross_validation(df=df, h=horizon, step_size=10, n_windows=1) # any step size for 1 window
evaluation = evaluate(df=cv_results, metrics=[bias, mae, rmse, mape], models=model_aliases)
eval_df = pd.DataFrame(evaluation).reset_index()
# Generate future forecasts
future_forecasts = sf.forecast(df=df, h=future_horizon)
# Store results
combined_eval_df = eval_df.copy() if eval_df is not None else pd.DataFrame()
combined_cv_results = cv_results.copy() if cv_results is not None else pd.DataFrame()
combined_cv_results = combined_cv_results
combined_future_forecasts = future_forecasts.copy() if future_forecasts is not None else pd.DataFrame()
# Run TimeGPT if selected
if use_timegpt:
try:
# Get API key from environment variables
nixtla_api_key = os.getenv("NIXTLA_API_KEY")
if not nixtla_api_key:
return None, None, None, None, None, None, "TimeGPT API key not found. Please set the NIXTLA_API_KEY environment variable."
# Initialize Nixtla client
nixtla_client = NixtlaClient(api_key=nixtla_api_key)
# Convert confidence_level to list format
level = [float(confidence_level)]
# Run cross-validation for TimeGPT
if eval_strategy == "Cross Validation":
timegpt_cv_df = nixtla_client.cross_validation(
df=df,
h=horizon,
freq=frequency,
n_windows=num_windows,
step_size=step_size
)
timegpt_cv_eval = evaluate(
df=timegpt_cv_df,
metrics=[mape, mae, rmse, bias],
models=['TimeGPT'],
)
timegpt_eval_df = pd.DataFrame(timegpt_cv_eval).reset_index()
timegpt_eval_df = timegpt_eval_df.round({col: 2 for col in timegpt_eval_df.columns[3:]})
else: # Fixed window
timegpt_cv_df = nixtla_client.cross_validation(
df=df,
h=horizon,
freq=frequency,
n_windows=1,
step_size=10
)
timegpt_cv_eval = evaluate(
df=timegpt_cv_df,
metrics=[mape, mae, rmse, bias],
models=['TimeGPT']
)
timegpt_eval_df = pd.DataFrame(timegpt_cv_eval).reset_index()
# Generate future forecasts with TimeGPT
forecast_timegpt = nixtla_client.forecast(
df=df,
h=future_horizon,
freq=frequency,
finetune_loss=finetune_loss
)
# Combine results - using merge instead of concat to avoid duplicate rows
if not combined_eval_df.empty and not timegpt_eval_df.empty:
# Get common columns for the join
join_columns = ['unique_id', 'metric']
# Merge the dataframes on unique_id and metric
combined_eval_df = pd.merge(
combined_eval_df,
timegpt_eval_df,
on=join_columns,
how='outer',
suffixes=('', '_timegpt')
)
# Clean up any duplicated columns from the merge
for col in combined_eval_df.columns:
if col.endswith('_timegpt'):
base_col = col.replace('_timegpt', '')
# Fill NaN values in the original column with values from the _timegpt column
if base_col in combined_eval_df.columns:
combined_eval_df[base_col] = combined_eval_df[base_col].fillna(combined_eval_df[col])
# Remove the _timegpt column
combined_eval_df = combined_eval_df.drop(columns=[col])
else:
combined_eval_df = timegpt_eval_df if not timegpt_eval_df.empty else combined_eval_df
if not combined_cv_results.empty and not timegpt_cv_df.empty:
# Make sure we're not duplicating the 'y' column
if 'y' in combined_cv_results.columns and 'y' in timegpt_cv_df.columns:
timegpt_cv_df_no_y = timegpt_cv_df.drop(columns=['y'])
combined_cv_results = pd.merge(
combined_cv_results,
timegpt_cv_df_no_y,
on=['unique_id', 'ds', 'cutoff'],
how='outer'
)
else:
combined_cv_results = pd.concat([combined_cv_results, timegpt_cv_df], ignore_index=True)
else:
combined_cv_results = timegpt_cv_df if not timegpt_cv_df.empty else combined_cv_results
if not combined_future_forecasts.empty and not forecast_timegpt.empty:
# Make sure we're merging on common columns
combined_future_forecasts = pd.merge(
combined_future_forecasts,
forecast_timegpt,
on=['unique_id', 'ds'],
how='outer'
)
else:
combined_future_forecasts = forecast_timegpt if not forecast_timegpt.empty else combined_future_forecasts
except Exception as e:
return None, None, None, None, None, None, f"Error with TimeGPT: {str(e)}"
# Create plots
if not combined_cv_results.empty:
fig_validation = create_forecast_plot(
combined_cv_results,
df,
f"{eval_strategy} Results"
)
else:
fig_validation = None
if not combined_future_forecasts.empty:
fig_future = create_future_forecast_plot(combined_future_forecasts, df)
else:
fig_future = None
# Export results
export_files = export_results(combined_eval_df, combined_cv_results, combined_future_forecasts)
return combined_eval_df, combined_cv_results, fig_validation, combined_future_forecasts, fig_future, export_files, "Analysis completed successfully!"
except Exception as e:
return None, None, None, None, None, None, f"Error during forecasting: {str(e)}"
# Sample CSV file generation
def download_sample():
sample_data = """unique_id,ds,y
^GSPC,2023-01-03,3824.139892578125
^GSPC,2023-01-04,3852.969970703125
^GSPC,2023-01-05,3808.10009765625
^GSPC,2023-01-06,3895.080078125
^GSPC,2023-01-09,3892.090087890625
^GSPC,2023-01-10,3919.25
^GSPC,2023-01-11,3969.610107421875
^GSPC,2023-01-12,3983.169921875
^GSPC,2023-01-13,3999.090087890625
^GSPC,2023-01-17,3990.969970703125
^GSPC,2023-01-18,3928.860107421875
^GSPC,2023-01-19,3898.85009765625
^GSPC,2023-01-20,3972.610107421875
^GSPC,2023-01-23,4019.81005859375
^GSPC,2023-01-24,4016.949951171875
^GSPC,2023-01-25,4016.219970703125
^GSPC,2023-01-26,4060.429931640625
^GSPC,2023-01-27,4070.56005859375
^GSPC,2023-01-30,4017.77001953125
^GSPC,2023-01-31,4076.60009765625
^GSPC,2023-02-01,4119.2099609375
^GSPC,2023-02-02,4179.759765625
^GSPC,2023-02-03,4136.47998046875
^GSPC,2023-02-06,4111.080078125
^GSPC,2023-02-07,4164
^GSPC,2023-02-08,4117.85986328125
^GSPC,2023-02-09,4081.5
^GSPC,2023-02-10,4090.4599609375
^GSPC,2023-02-13,4137.2900390625
^GSPC,2023-02-14,4136.1298828125
^GSPC,2023-02-15,4147.60009765625
^GSPC,2023-02-16,4090.409912109375
^GSPC,2023-02-17,4079.090087890625
^GSPC,2023-02-21,3997.340087890625
^GSPC,2023-02-22,3991.050048828125
^GSPC,2023-02-23,4012.320068359375
^GSPC,2023-02-24,3970.0400390625
^GSPC,2023-02-27,3982.239990234375
^GSPC,2023-02-28,3970.14990234375
^GSPC,2023-03-01,3951.389892578125
^GSPC,2023-03-02,3981.35009765625
^GSPC,2023-03-03,4045.639892578125
^GSPC,2023-03-06,4048.419921875
^GSPC,2023-03-07,3986.3701171875
^GSPC,2023-03-08,3992.010009765625
^GSPC,2023-03-09,3918.320068359375
^GSPC,2023-03-10,3861.590087890625
^GSPC,2023-03-13,3855.760009765625
^GSPC,2023-03-14,3919.2900390625
^GSPC,2023-03-15,3891.929931640625
^GSPC,2023-03-16,3960.280029296875
^GSPC,2023-03-17,3916.639892578125
^GSPC,2023-03-20,3951.570068359375
^GSPC,2023-03-21,4002.8701171875
^GSPC,2023-03-22,3936.969970703125
^GSPC,2023-03-23,3948.719970703125
^GSPC,2023-03-24,3970.989990234375
^GSPC,2023-03-27,3977.530029296875
^GSPC,2023-03-28,3971.27001953125
^GSPC,2023-03-29,4027.81005859375
^GSPC,2023-03-30,4050.830078125
^GSPC,2023-03-31,4109.31005859375
^GSPC,2023-04-03,4124.509765625
^GSPC,2023-04-04,4100.60009765625
^GSPC,2023-04-05,4090.3798828125
^GSPC,2023-04-06,4105.02001953125
^GSPC,2023-04-10,4109.10986328125
^GSPC,2023-04-11,4108.93994140625
^GSPC,2023-04-12,4091.949951171875
^GSPC,2023-04-13,4146.22021484375
^GSPC,2023-04-14,4137.64013671875
^GSPC,2023-04-17,4151.31982421875
^GSPC,2023-04-18,4154.8701171875
^GSPC,2023-04-19,4154.52001953125
^GSPC,2023-04-20,4129.7900390625
^GSPC,2023-04-21,4133.52001953125
^GSPC,2023-04-24,4137.0400390625
^GSPC,2023-04-25,4071.6298828125
^GSPC,2023-04-26,4055.989990234375
^GSPC,2023-04-27,4135.35009765625
^GSPC,2023-04-28,4169.47998046875
^GSPC,2023-05-01,4167.8701171875
^GSPC,2023-05-02,4119.580078125
^GSPC,2023-05-03,4090.75
^GSPC,2023-05-04,4061.219970703125
^GSPC,2023-05-05,4136.25
^GSPC,2023-05-08,4138.1201171875
^GSPC,2023-05-09,4119.169921875
^GSPC,2023-05-10,4137.64013671875
^GSPC,2023-05-11,4130.6201171875
^GSPC,2023-05-12,4124.080078125
^GSPC,2023-05-15,4136.27978515625
^GSPC,2023-05-16,4109.89990234375
^GSPC,2023-05-17,4158.77001953125
^GSPC,2023-05-18,4198.0498046875
^GSPC,2023-05-19,4191.97998046875
^GSPC,2023-05-22,4192.6298828125
^GSPC,2023-05-23,4145.580078125
^GSPC,2023-05-24,4115.240234375
^GSPC,2023-05-25,4151.27978515625
^GSPC,2023-05-26,4205.4501953125
^GSPC,2023-05-30,4205.52001953125
^GSPC,2023-05-31,4179.830078125
^GSPC,2023-06-01,4221.02001953125
^GSPC,2023-06-02,4282.3701171875
^GSPC,2023-06-05,4273.7900390625
^GSPC,2023-06-06,4283.85009765625
^GSPC,2023-06-07,4267.52001953125
^GSPC,2023-06-08,4293.93017578125
^GSPC,2023-06-09,4298.85986328125
^GSPC,2023-06-12,4338.93017578125
^GSPC,2023-06-13,4369.009765625
^GSPC,2023-06-14,4372.58984375
^GSPC,2023-06-15,4425.83984375
^GSPC,2023-06-16,4409.58984375
^GSPC,2023-06-20,4388.7099609375
^GSPC,2023-06-21,4365.68994140625
^GSPC,2023-06-22,4381.89013671875
^GSPC,2023-06-23,4348.330078125
^GSPC,2023-06-26,4328.81982421875
^GSPC,2023-06-27,4378.41015625
^GSPC,2023-06-28,4376.85986328125
^GSPC,2023-06-29,4396.43994140625
^GSPC,2023-06-30,4450.3798828125
^GSPC,2023-07-03,4455.58984375
^GSPC,2023-07-05,4446.81982421875
^GSPC,2023-07-06,4411.58984375
^GSPC,2023-07-07,4398.9501953125
^GSPC,2023-07-10,4409.52978515625
^GSPC,2023-07-11,4439.259765625
^GSPC,2023-07-12,4472.16015625
^GSPC,2023-07-13,4510.0400390625
^GSPC,2023-07-14,4505.419921875
^GSPC,2023-07-17,4522.7900390625
^GSPC,2023-07-18,4554.97998046875
^GSPC,2023-07-19,4565.72021484375
^GSPC,2023-07-20,4534.8701171875
^GSPC,2023-07-21,4536.33984375
^GSPC,2023-07-24,4554.64013671875
^GSPC,2023-07-25,4567.4599609375
^GSPC,2023-07-26,4566.75
^GSPC,2023-07-27,4537.41015625
^GSPC,2023-07-28,4582.22998046875
^GSPC,2023-07-31,4588.9599609375
^GSPC,2023-08-01,4576.72998046875
^GSPC,2023-08-02,4513.39013671875
^GSPC,2023-08-03,4501.89013671875
^GSPC,2023-08-04,4478.02978515625
^GSPC,2023-08-07,4518.43994140625
^GSPC,2023-08-08,4499.3798828125
^GSPC,2023-08-09,4467.7099609375
^GSPC,2023-08-10,4468.830078125
^GSPC,2023-08-11,4464.0498046875
^GSPC,2023-08-14,4489.72021484375
^GSPC,2023-08-15,4437.85986328125
^GSPC,2023-08-16,4404.330078125
^GSPC,2023-08-17,4370.35986328125
^GSPC,2023-08-18,4369.7099609375
^GSPC,2023-08-21,4399.77001953125
^GSPC,2023-08-22,4387.5498046875
^GSPC,2023-08-23,4436.009765625
^GSPC,2023-08-24,4376.31005859375
^GSPC,2023-08-25,4405.7099609375
^GSPC,2023-08-28,4433.31005859375
^GSPC,2023-08-29,4497.6298828125
^GSPC,2023-08-30,4514.8701171875
^GSPC,2023-08-31,4507.66015625
^GSPC,2023-09-01,4515.77001953125
^GSPC,2023-09-05,4496.830078125
^GSPC,2023-09-06,4465.47998046875
^GSPC,2023-09-07,4451.14013671875
^GSPC,2023-09-08,4457.490234375
^GSPC,2023-09-11,4487.4599609375
^GSPC,2023-09-12,4461.89990234375
^GSPC,2023-09-13,4467.43994140625
^GSPC,2023-09-14,4505.10009765625
^GSPC,2023-09-15,4450.31982421875
^GSPC,2023-09-18,4453.52978515625
^GSPC,2023-09-19,4443.9501953125
^GSPC,2023-09-20,4402.2001953125
^GSPC,2023-09-21,4330
^GSPC,2023-09-22,4320.06005859375
^GSPC,2023-09-25,4337.43994140625
^GSPC,2023-09-26,4273.52978515625
^GSPC,2023-09-27,4274.509765625
^GSPC,2023-09-28,4299.7001953125
^GSPC,2023-09-29,4288.0498046875
^GSPC,2023-10-02,4288.39013671875
^GSPC,2023-10-03,4229.4501953125
^GSPC,2023-10-04,4263.75
^GSPC,2023-10-05,4258.18994140625
^GSPC,2023-10-06,4308.5
^GSPC,2023-10-09,4335.66015625
^GSPC,2023-10-10,4358.240234375
^GSPC,2023-10-11,4376.9501953125
^GSPC,2023-10-12,4349.60986328125
^GSPC,2023-10-13,4327.77978515625
^GSPC,2023-10-16,4373.6298828125
^GSPC,2023-10-17,4373.2001953125
^GSPC,2023-10-18,4314.60009765625
^GSPC,2023-10-19,4278
^GSPC,2023-10-20,4224.16015625
^GSPC,2023-10-23,4217.0400390625
^GSPC,2023-10-24,4247.68017578125
^GSPC,2023-10-25,4186.77001953125
^GSPC,2023-10-26,4137.22998046875
^GSPC,2023-10-27,4117.3701171875
^GSPC,2023-10-30,4166.81982421875
^GSPC,2023-10-31,4193.7998046875
^GSPC,2023-11-01,4237.85986328125
^GSPC,2023-11-02,4317.77978515625
^GSPC,2023-11-03,4358.33984375
^GSPC,2023-11-06,4365.97998046875
^GSPC,2023-11-07,4378.3798828125
^GSPC,2023-11-08,4382.77978515625
^GSPC,2023-11-09,4347.35009765625
^GSPC,2023-11-10,4415.240234375
^GSPC,2023-11-13,4411.5498046875
^GSPC,2023-11-14,4495.7001953125
^GSPC,2023-11-15,4502.8798828125
^GSPC,2023-11-16,4508.240234375
^GSPC,2023-11-17,4514.02001953125
^GSPC,2023-11-20,4547.3798828125
^GSPC,2023-11-21,4538.18994140625
^GSPC,2023-11-22,4556.6201171875
^GSPC,2023-11-24,4559.33984375
^GSPC,2023-11-27,4550.43017578125
^GSPC,2023-11-28,4554.89013671875
^GSPC,2023-11-29,4550.580078125
^GSPC,2023-11-30,4567.7998046875
^GSPC,2023-12-01,4594.6298828125
^GSPC,2023-12-04,4569.77978515625
^GSPC,2023-12-05,4567.18017578125
^GSPC,2023-12-06,4549.33984375
^GSPC,2023-12-07,4585.58984375
^GSPC,2023-12-08,4604.3701171875
^GSPC,2023-12-11,4622.43994140625
^GSPC,2023-12-12,4643.7001953125
^GSPC,2023-12-13,4707.08984375
^GSPC,2023-12-14,4719.5498046875
^GSPC,2023-12-15,4719.18994140625
^GSPC,2023-12-18,4740.56005859375
^GSPC,2023-12-19,4768.3701171875
^GSPC,2023-12-20,4698.35009765625
^GSPC,2023-12-21,4746.75
^GSPC,2023-12-22,4754.6298828125
^GSPC,2023-12-26,4774.75
^GSPC,2023-12-27,4781.580078125
^GSPC,2023-12-28,4783.35009765625
^GSPC,2023-12-29,4769.830078125
^GSPC,2024-01-02,4742.830078125
^GSPC,2024-01-03,4704.81005859375
^GSPC,2024-01-04,4688.68017578125
^GSPC,2024-01-05,4697.240234375
^GSPC,2024-01-08,4763.5400390625
^GSPC,2024-01-09,4756.5
^GSPC,2024-01-10,4783.4501953125
^GSPC,2024-01-11,4780.240234375
^GSPC,2024-01-12,4783.830078125
^GSPC,2024-01-16,4765.97998046875
^GSPC,2024-01-17,4739.2099609375
^GSPC,2024-01-18,4780.93994140625
^GSPC,2024-01-19,4839.81005859375
^GSPC,2024-01-22,4850.43017578125
^GSPC,2024-01-23,4864.60009765625
^GSPC,2024-01-24,4868.5498046875
^GSPC,2024-01-25,4894.16015625
^GSPC,2024-01-26,4890.97021484375
^GSPC,2024-01-29,4927.93017578125
^GSPC,2024-01-30,4924.97021484375
^GSPC,2024-01-31,4845.64990234375
^GSPC,2024-02-01,4906.18994140625
^GSPC,2024-02-02,4958.60986328125
^GSPC,2024-02-05,4942.81005859375
^GSPC,2024-02-06,4954.22998046875
^GSPC,2024-02-07,4995.06005859375
^GSPC,2024-02-08,4997.91015625
^GSPC,2024-02-09,5026.60986328125
^GSPC,2024-02-12,5021.83984375
^GSPC,2024-02-13,4953.169921875
^GSPC,2024-02-14,5000.6201171875
^GSPC,2024-02-15,5029.72998046875
^GSPC,2024-02-16,5005.56982421875
^GSPC,2024-02-20,4975.509765625
^GSPC,2024-02-21,4981.7998046875
^GSPC,2024-02-22,5087.02978515625
^GSPC,2024-02-23,5088.7998046875
^GSPC,2024-02-26,5069.52978515625
^GSPC,2024-02-27,5078.18017578125
^GSPC,2024-02-28,5069.759765625
^GSPC,2024-02-29,5096.27001953125
^GSPC,2024-03-01,5137.080078125
^GSPC,2024-03-04,5130.9501953125
^GSPC,2024-03-05,5078.64990234375
^GSPC,2024-03-06,5104.759765625
^GSPC,2024-03-07,5157.35986328125
^GSPC,2024-03-08,5123.68994140625
^GSPC,2024-03-11,5117.93994140625
^GSPC,2024-03-12,5175.27001953125
^GSPC,2024-03-13,5165.31005859375
^GSPC,2024-03-14,5150.47998046875
^GSPC,2024-03-15,5117.08984375
^GSPC,2024-03-18,5149.419921875
^GSPC,2024-03-19,5178.509765625
^GSPC,2024-03-20,5224.6201171875
^GSPC,2024-03-21,5241.52978515625
^GSPC,2024-03-22,5234.18017578125
^GSPC,2024-03-25,5218.18994140625
^GSPC,2024-03-26,5203.580078125
^GSPC,2024-03-27,5248.490234375
^GSPC,2024-03-28,5254.35009765625
^GSPC,2024-04-01,5243.77001953125
^GSPC,2024-04-02,5205.81005859375
^GSPC,2024-04-03,5211.490234375
^GSPC,2024-04-04,5147.2099609375
^GSPC,2024-04-05,5204.33984375
^GSPC,2024-04-08,5202.39013671875
^GSPC,2024-04-09,5209.91015625
^GSPC,2024-04-10,5160.64013671875
^GSPC,2024-04-11,5199.06005859375
^GSPC,2024-04-12,5123.41015625
^GSPC,2024-04-15,5061.81982421875
^GSPC,2024-04-16,5051.41015625
^GSPC,2024-04-17,5022.2099609375
^GSPC,2024-04-18,5011.1201171875
^GSPC,2024-04-19,4967.22998046875
^GSPC,2024-04-22,5010.60009765625
^GSPC,2024-04-23,5070.5498046875
^GSPC,2024-04-24,5071.6298828125
^GSPC,2024-04-25,5048.419921875
^GSPC,2024-04-26,5099.9599609375
^GSPC,2024-04-29,5116.169921875
^GSPC,2024-04-30,5035.68994140625
^GSPC,2024-05-01,5018.39013671875
^GSPC,2024-05-02,5064.2001953125
^GSPC,2024-05-03,5127.7900390625
^GSPC,2024-05-06,5180.740234375
^GSPC,2024-05-07,5187.7001953125
^GSPC,2024-05-08,5187.669921875
^GSPC,2024-05-09,5214.080078125
^GSPC,2024-05-10,5222.68017578125
^GSPC,2024-05-13,5221.419921875
^GSPC,2024-05-14,5246.68017578125
^GSPC,2024-05-15,5308.14990234375
^GSPC,2024-05-16,5297.10009765625
^GSPC,2024-05-17,5303.27001953125
^GSPC,2024-05-20,5308.1298828125
^GSPC,2024-05-21,5321.41015625
^GSPC,2024-05-22,5307.009765625
^GSPC,2024-05-23,5267.83984375
^GSPC,2024-05-24,5304.72021484375
^GSPC,2024-05-28,5306.0400390625
^GSPC,2024-05-29,5266.9501953125
^GSPC,2024-05-30,5235.47998046875
^GSPC,2024-05-31,5277.509765625
^GSPC,2024-06-03,5283.39990234375
^GSPC,2024-06-04,5291.33984375
^GSPC,2024-06-05,5354.02978515625
^GSPC,2024-06-06,5352.9599609375
^GSPC,2024-06-07,5346.990234375
^GSPC,2024-06-10,5360.7900390625
^GSPC,2024-06-11,5375.31982421875
^GSPC,2024-06-12,5421.02978515625
^GSPC,2024-06-13,5433.740234375
^GSPC,2024-06-14,5431.60009765625
^GSPC,2024-06-17,5473.22998046875
^GSPC,2024-06-18,5487.02978515625
^GSPC,2024-06-20,5473.169921875
^GSPC,2024-06-21,5464.6201171875
^GSPC,2024-06-24,5447.8701171875
^GSPC,2024-06-25,5469.2998046875
^GSPC,2024-06-26,5477.89990234375
^GSPC,2024-06-27,5482.8701171875
^GSPC,2024-06-28,5460.47998046875
^GSPC,2024-07-01,5475.08984375
^GSPC,2024-07-02,5509.009765625
^GSPC,2024-07-03,5537.02001953125
^GSPC,2024-07-05,5567.18994140625
^GSPC,2024-07-08,5572.85009765625
^GSPC,2024-07-09,5576.97998046875
^GSPC,2024-07-10,5633.91015625
^GSPC,2024-07-11,5584.5400390625
^GSPC,2024-07-12,5615.35009765625
^GSPC,2024-07-15,5631.22021484375
^GSPC,2024-07-16,5667.2001953125
^GSPC,2024-07-17,5588.27001953125
^GSPC,2024-07-18,5544.58984375
^GSPC,2024-07-19,5505
^GSPC,2024-07-22,5564.41015625
^GSPC,2024-07-23,5555.740234375
^GSPC,2024-07-24,5427.1298828125
^GSPC,2024-07-25,5399.22021484375
^GSPC,2024-07-26,5459.10009765625
^GSPC,2024-07-29,5463.5400390625
^GSPC,2024-07-30,5436.43994140625
^GSPC,2024-07-31,5522.2998046875
^GSPC,2024-08-01,5446.68017578125
^GSPC,2024-08-02,5346.56005859375
^GSPC,2024-08-05,5186.330078125
^GSPC,2024-08-06,5240.02978515625
^GSPC,2024-08-07,5199.5
^GSPC,2024-08-08,5319.31005859375
^GSPC,2024-08-09,5344.16015625
^GSPC,2024-08-12,5344.39013671875
^GSPC,2024-08-13,5434.43017578125
^GSPC,2024-08-14,5455.2099609375
^GSPC,2024-08-15,5543.22021484375
^GSPC,2024-08-16,5554.25
^GSPC,2024-08-19,5608.25
^GSPC,2024-08-20,5597.1201171875
^GSPC,2024-08-21,5620.85009765625
^GSPC,2024-08-22,5570.64013671875
^GSPC,2024-08-23,5634.60986328125
^GSPC,2024-08-26,5616.83984375
^GSPC,2024-08-27,5625.7998046875
^GSPC,2024-08-28,5592.18017578125
^GSPC,2024-08-29,5591.9599609375
^GSPC,2024-08-30,5648.39990234375
^GSPC,2024-09-03,5528.93017578125
^GSPC,2024-09-04,5520.06982421875
^GSPC,2024-09-05,5503.41015625
^GSPC,2024-09-06,5408.419921875
^GSPC,2024-09-09,5471.0498046875
^GSPC,2024-09-10,5495.52001953125
^GSPC,2024-09-11,5554.1298828125
^GSPC,2024-09-12,5595.759765625
^GSPC,2024-09-13,5626.02001953125
^GSPC,2024-09-16,5633.08984375
^GSPC,2024-09-17,5634.580078125
^GSPC,2024-09-18,5618.259765625
^GSPC,2024-09-19,5713.64013671875
^GSPC,2024-09-20,5702.5498046875
^GSPC,2024-09-23,5718.56982421875
^GSPC,2024-09-24,5732.93017578125
^GSPC,2024-09-25,5722.259765625
^GSPC,2024-09-26,5745.3701171875
^GSPC,2024-09-27,5738.169921875
^GSPC,2024-09-30,5762.47998046875
^GSPC,2024-10-01,5708.75
^GSPC,2024-10-02,5709.5400390625
^GSPC,2024-10-03,5699.93994140625
^GSPC,2024-10-04,5751.06982421875
^GSPC,2024-10-07,5695.93994140625
^GSPC,2024-10-08,5751.1298828125
^GSPC,2024-10-09,5792.0400390625
^GSPC,2024-10-10,5780.0498046875
^GSPC,2024-10-11,5815.02978515625
^GSPC,2024-10-14,5859.85009765625
^GSPC,2024-10-15,5815.259765625
^GSPC,2024-10-16,5842.47021484375
^GSPC,2024-10-17,5841.47021484375
^GSPC,2024-10-18,5864.669921875
^GSPC,2024-10-21,5853.97998046875
^GSPC,2024-10-22,5851.2001953125
^GSPC,2024-10-23,5797.419921875
^GSPC,2024-10-24,5809.85986328125
^GSPC,2024-10-25,5808.1201171875
^GSPC,2024-10-28,5823.52001953125
^GSPC,2024-10-29,5832.919921875
^GSPC,2024-10-30,5813.669921875
^GSPC,2024-10-31,5705.4501953125
^GSPC,2024-11-01,5728.7998046875
^GSPC,2024-11-04,5712.68994140625
^GSPC,2024-11-05,5782.759765625
^GSPC,2024-11-06,5929.0400390625
^GSPC,2024-11-07,5973.10009765625
^GSPC,2024-11-08,5995.5400390625
^GSPC,2024-11-11,6001.35009765625
^GSPC,2024-11-12,5983.990234375
^GSPC,2024-11-13,5985.3798828125
^GSPC,2024-11-14,5949.169921875
^GSPC,2024-11-15,5870.6201171875
^GSPC,2024-11-18,5893.6201171875
^GSPC,2024-11-19,5916.97998046875
^GSPC,2024-11-20,5917.10986328125
^GSPC,2024-11-21,5948.7099609375
^GSPC,2024-11-22,5969.33984375
^GSPC,2024-11-25,5987.3701171875
^GSPC,2024-11-26,6021.6298828125
^GSPC,2024-11-27,5998.740234375
^GSPC,2024-11-29,6032.3798828125
^GSPC,2024-12-02,6047.14990234375
^GSPC,2024-12-03,6049.8798828125
^GSPC,2024-12-04,6086.490234375
^GSPC,2024-12-05,6075.10986328125
^GSPC,2024-12-06,6090.27001953125
^GSPC,2024-12-09,6052.85009765625
^GSPC,2024-12-10,6034.91015625
^GSPC,2024-12-11,6084.18994140625
^GSPC,2024-12-12,6051.25
^GSPC,2024-12-13,6051.08984375
^GSPC,2024-12-16,6074.080078125
^GSPC,2024-12-17,6050.60986328125
^GSPC,2024-12-18,5872.16015625
^GSPC,2024-12-19,5867.080078125
^GSPC,2024-12-20,5930.85009765625
^GSPC,2024-12-23,5974.06982421875
^GSPC,2024-12-24,6040.0400390625
^GSPC,2024-12-26,6037.58984375
^GSPC,2024-12-27,5970.83984375
^GSPC,2024-12-30,5906.93994140625
^GSPC,2024-12-31,5881.6298828125
^GSPC,2025-01-02,5868.5498046875
^GSPC,2025-01-03,5942.47021484375
^GSPC,2025-01-06,5975.3798828125
^GSPC,2025-01-07,5909.02978515625
^GSPC,2025-01-08,5918.25
^GSPC,2025-01-10,5827.0400390625
^GSPC,2025-01-13,5836.22021484375
^GSPC,2025-01-14,5842.91015625
^GSPC,2025-01-15,5949.91015625
^GSPC,2025-01-16,5937.33984375
^GSPC,2025-01-17,5996.66015625
^GSPC,2025-01-21,6049.240234375
^GSPC,2025-01-22,6086.3701171875
^GSPC,2025-01-23,6118.7099609375
^GSPC,2025-01-24,6101.240234375
^GSPC,2025-01-27,6012.27978515625
^GSPC,2025-01-28,6067.7001953125
^GSPC,2025-01-29,6039.31005859375
^GSPC,2025-01-30,6071.169921875
^GSPC,2025-01-31,6040.52978515625
^GSPC,2025-02-03,5994.56982421875
^GSPC,2025-02-04,6037.8798828125
^GSPC,2025-02-05,6061.47998046875
^GSPC,2025-02-06,6083.56982421875
^GSPC,2025-02-07,6025.990234375
^GSPC,2025-02-10,6066.43994140625
^GSPC,2025-02-11,6068.5
^GSPC,2025-02-12,6051.97021484375
^GSPC,2025-02-13,6115.06982421875
^GSPC,2025-02-14,6114.6298828125
^GSPC,2025-02-18,6129.580078125
^GSPC,2025-02-19,6144.14990234375
^GSPC,2025-02-20,6117.52001953125
^GSPC,2025-02-21,6013.1298828125
^GSPC,2025-02-24,5983.25
^GSPC,2025-02-25,5955.25
^GSPC,2025-02-26,5956.06005859375
^GSPC,2025-02-27,5861.56982421875
^GSPC,2025-02-28,5954.5
^GSPC,2025-03-03,5849.72021484375
^GSPC,2025-03-04,5778.14990234375
^GSPC,2025-03-05,5842.6298828125
^GSPC,2025-03-06,5738.52001953125
^GSPC,2025-03-07,5770.2001953125
^GSPC,2025-03-10,5614.56005859375
^GSPC,2025-03-11,5572.06982421875
^GSPC,2025-03-12,5599.2998046875
^GSPC,2025-03-13,5521.52001953125
^GSPC,2025-03-14,5638.93994140625
^GSPC,2025-03-17,5675.1201171875
^GSPC,2025-03-18,5614.66015625
^GSPC,2025-03-19,5675.2900390625
^GSPC,2025-03-20,5662.89013671875
^GSPC,2025-03-21,5667.56005859375
^GSPC,2025-03-24,5767.56982421875
^GSPC,2025-03-25,5776.64990234375
^GSPC,2025-03-26,5712.2001953125
^GSPC,2025-03-27,5693.31005859375
^GSPC,2025-03-28,5580.93994140625
^GSPC,2025-03-31,5611.85009765625
"""
temp = tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode='w', newline='')
temp.write(sample_data)
temp.close()
return temp.name
# Global theme
theme = gr.themes.Soft(
primary_hue="blue",
secondary_hue="indigo",
neutral_hue="gray"
)
# Gradio interface
with gr.Blocks(title="Time Series Forecasting App", theme=theme) as app:
gr.Markdown("# 📈 Time Series Forecasting App")
gr.Markdown("Upload a CSV with `unique_id`, `ds`, and `y` columns to apply forecasting models.")
# Disclaimer about external predictors
with gr.Accordion("Disclaimer", open=True):
gr.Markdown("""
**Disclaimer:** For simplicity, this app does not allow the use of external predictors.
However, they can be easily included in the underlying statsforecast (for AutoARIMA)
and the TimeGPT implementation by Nixtla. To use external predictors, you would need to modify
the code to include them in your forecasting models.
""")
with gr.Row():
with gr.Column(scale=2):
file_input = gr.File(label="Upload CSV file", file_types=[".csv"])
download_btn = gr.Button("Download Sample Data", variant="secondary")
download_output = gr.File(label="Click to download", visible=True)
download_btn.click(fn=download_sample, outputs=download_output)
with gr.Accordion("Data & Validation Settings", open=True):
frequency = gr.Dropdown(
choices=[
("Hourly", "H"),
("Business Day", "B"),
("Daily", "D"),
("Weekly", "WS"),
("Monthly", "MS"),
("Quarterly", "QS"),
("Yearly", "YS")
],
label="Data Frequency",
value="D"
)
# Evaluation Strategy
eval_strategy = gr.Radio(
choices=["Fixed Window", "Cross Validation"],
label="Evaluation Strategy",
value="Cross Validation"
)
# Fixed Window settings
with gr.Group(visible=True) as fixed_window_box:
gr.Markdown("### Fixed Window Settings")
horizon = gr.Slider(1, 100, value=10, step=1, label="Validation Horizon (steps ahead to predict)")
# Cross Validation settings
with gr.Group(visible=True) as cv_box:
gr.Markdown("### Cross Validation Settings")
with gr.Row():
step_size = gr.Slider(1, 50, value=10, step=1, label="Step Size (distance between windows)")
num_windows = gr.Slider(1, 20, value=5, step=1, label="Number of Windows")
# Future forecast settings (always visible)
with gr.Group():
gr.Markdown("### Future Forecast Settings")
future_horizon = gr.Slider(1, 100, value=10, step=1, label="Future Forecast Horizon (steps to predict)")
with gr.Accordion("Model Configuration", open=True):
with gr.Tabs() as model_tabs:
# Traditional Statistical Models Tab
with gr.TabItem("Statistical Models"):
gr.Markdown("## Basic Models")
with gr.Row():
use_historical_avg = gr.Checkbox(label="Historical Average", value=True)
use_naive = gr.Checkbox(label="Naive", value=True)
# Common seasonality parameter at the top level
with gr.Group():
gr.Markdown("### Seasonality Configuration")
gr.Markdown("This seasonality period affects Seasonal Naive, Seasonal Window Average, AutoETS, and AutoARIMA models")
seasonality = gr.Number(label="Seasonality Period", value=5)
gr.Markdown("### Seasonal Models")
with gr.Row():
use_seasonal_naive = gr.Checkbox(label="Seasonal Naive", value=True)
gr.Markdown("### Window-based Models")
with gr.Row():
use_window_avg = gr.Checkbox(label="Window Average", value=False)
window_size = gr.Number(label="Window Size", value=10)
with gr.Row():
use_seasonal_window_avg = gr.Checkbox(label="Seasonal Window Average", value=False)
seasonal_window_size = gr.Number(label="Seasonal Window Size", value=2)
gr.Markdown("### Advanced Models (use seasonality from above)")
with gr.Row():
use_autoets = gr.Checkbox(label="AutoETS (Exponential Smoothing)", value=False)
use_autoarima = gr.Checkbox(label="AutoARIMA", value=False)
# Transformer Models Tab (TimeGPT)
with gr.TabItem("Transformer Models"):
gr.Markdown("## TimeGPT Model")
gr.Markdown("TimeGPT uses a transformer architecture for state-of-the-art time series forecasting")
with gr.Row():
use_timegpt = gr.Checkbox(label="Use TimeGPT", value=True)
with gr.Group():
gr.Markdown("### TimeGPT Configuration")
with gr.Row():
finetune_loss = gr.Dropdown(
choices=["mape", "mae", "rmse", "smape"],
label="Finetune Loss Metric",
value="mape"
)
confidence_level = gr.Slider(50, 99, value=95, step=1, label="Confidence Level (%)")
gr.Markdown("""
**Note:** Using TimeGPT requires a valid API key. The API key should
be set as an environment variable named `NIXTLA_API_KEY`. This space uses a trial key, which is rate limited.
""")
with gr.Column(scale=3):
message_output = gr.Textbox(label="Status Message")
with gr.Tabs() as tabs:
with gr.TabItem("Validation Results"):
eval_output = gr.Dataframe(label="Evaluation Metrics")
validation_plot = gr.Plot(label="Validation Plot")
validation_output = gr.Dataframe(label="Validation Data", visible=False)
with gr.Row():
show_data_btn = gr.Button("Show Validation Data")
hide_data_btn = gr.Button("Hide Validation Data", visible=False)
def show_data():
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
def hide_data():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
show_data_btn.click(
fn=show_data,
outputs=[validation_output, hide_data_btn, show_data_btn]
)
hide_data_btn.click(
fn=hide_data,
outputs=[validation_output, hide_data_btn, show_data_btn]
)
with gr.TabItem("Future Forecast"):
forecast_plot = gr.Plot(label="Future Forecast Plot")
forecast_output = gr.Dataframe(label="Future Forecast Data", visible=False)
with gr.Row():
show_forecast_btn = gr.Button("Show Forecast Data")
hide_forecast_btn = gr.Button("Hide Forecast Data", visible=False)
def show_forecast():
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
def hide_forecast():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
show_forecast_btn.click(
fn=show_forecast,
outputs=[forecast_output, hide_forecast_btn, show_forecast_btn]
)
hide_forecast_btn.click(
fn=hide_forecast,
outputs=[forecast_output, hide_forecast_btn, show_forecast_btn]
)
with gr.TabItem("Export Results"):
export_files = gr.Files(label="Download Results")
with gr.Row(visible=True) as run_row:
submit_btn = gr.Button("Run Validation and Forecast", variant="primary", size="lg")
# Update visibility of the appropriate box based on evaluation strategy
def update_eval_boxes(strategy):
return (gr.update(visible=strategy == "Fixed Window"),
gr.update(visible=strategy == "Cross Validation"))
eval_strategy.change(
fn=update_eval_boxes,
inputs=[eval_strategy],
outputs=[fixed_window_box, cv_box]
)
# Run forecast when button is clicked
submit_btn.click(
fn=run_forecast,
inputs=[
file_input, frequency, eval_strategy, horizon, step_size, num_windows,
use_historical_avg, use_naive, use_seasonal_naive, seasonality,
use_window_avg, window_size, use_seasonal_window_avg, seasonal_window_size,
use_autoets, use_autoarima, use_timegpt, finetune_loss, confidence_level,
future_horizon
],
outputs=[
eval_output,
validation_output,
validation_plot,
forecast_output,
forecast_plot,
export_files,
message_output]
)
if __name__ == "__main__":
app.launch(share=False) |