Spaces:
Running
Running
File size: 7,558 Bytes
ab4e093 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
# Deployment Guide for Hugging Face Spaces
This guide provides step-by-step instructions for deploying the Multi-Modal Knowledge Distillation application to Hugging Face Spaces.
## π Pre-Deployment Checklist
β
**Project Structure Complete**
- All required files and directories are present
- Python syntax validation passed
- Frontend files are properly structured
β
**Configuration Validated**
- `requirements.txt` contains all necessary dependencies
- `spaces_config.yaml` is properly configured
- API endpoints are implemented and accessible
β
**Documentation Complete**
- Comprehensive README.md with usage instructions
- API documentation included
- Troubleshooting guide provided
## π Deployment Steps
### Step 1: Create Hugging Face Space
1. **Go to Hugging Face Spaces**
- Visit [https://huggingface.co/spaces](https://huggingface.co/spaces)
- Click "Create new Space"
2. **Configure Space Settings**
- **Space name**: `multi-modal-knowledge-distillation` (or your preferred name)
- **License**: MIT
- **SDK**: Gradio
- **Hardware**: T4 small (minimum) or T4 medium (recommended)
- **Visibility**: Public or Private (your choice)
3. **Initialize Repository**
- Choose "Initialize with README"
- Click "Create Space"
### Step 2: Upload Project Files
Upload all the following files to your Space repository:
#### Core Application Files
```
app.py # Main FastAPI application
requirements.txt # Python dependencies
spaces_config.yaml # Hugging Face Spaces configuration
README.md # Project documentation
.gitignore # Git ignore rules
```
#### Source Code
```
src/
βββ __init__.py # Package initialization
βββ model_loader.py # Model loading utilities
βββ distillation.py # Knowledge distillation engine
βββ utils.py # Utility functions
```
#### Frontend Files
```
templates/
βββ index.html # Main web interface
static/
βββ css/
β βββ style.css # Application styles
βββ js/
βββ main.js # Frontend JavaScript
```
#### Directory Structure (will be created automatically)
```
uploads/ # Uploaded model files
models/ # Trained models
temp/ # Temporary files
logs/ # Application logs
```
### Step 3: Configure Hardware
1. **Go to Space Settings**
- Click on "Settings" tab in your Space
- Navigate to "Hardware" section
2. **Select Hardware**
- **Minimum**: T4 small (16GB RAM, 1x T4 GPU)
- **Recommended**: T4 medium (32GB RAM, 1x T4 GPU)
- **For large models**: A10G small or larger
3. **Apply Changes**
- Click "Update hardware"
- Your Space will restart with new hardware
### Step 4: Monitor Deployment
1. **Build Process**
- Watch the "Logs" tab for build progress
- Build typically takes 5-10 minutes
- Dependencies will be installed automatically
2. **Common Build Issues**
- **PyTorch installation**: May take several minutes
- **CUDA compatibility**: Ensure PyTorch version supports your hardware
- **Memory issues**: Upgrade hardware if needed
3. **Successful Deployment**
- Space status shows "Running"
- Application is accessible via the Space URL
- Health check endpoint responds correctly
## π§ Configuration Options
### Environment Variables
You can set these in your Space settings:
```bash
# Server Configuration
PORT=7860 # Default port (usually not needed)
HOST=0.0.0.0 # Default host
# Resource Limits
MAX_FILE_SIZE=5368709120 # 5GB max file size
MAX_MODELS=10 # Maximum teacher models
MAX_TRAINING_TIME=3600 # 1 hour training limit
# GPU Configuration
CUDA_VISIBLE_DEVICES=0 # GPU device selection
```
### Hardware Recommendations
| Use Case | Hardware | RAM | GPU | Cost |
|----------|----------|-----|-----|------|
| Demo/Testing | CPU Basic | 16GB | None | Free |
| Small Models | T4 small | 16GB | T4 | Low |
| Production | T4 medium | 32GB | T4 | Medium |
| Large Models | A10G small | 24GB | A10G | High |
## π§ͺ Testing Your Deployment
### 1. Health Check
```bash
curl https://your-space-name-username.hf.space/health
```
### 2. Web Interface
- Visit your Space URL
- Test file upload functionality
- Verify model selection works
- Check training configuration options
### 3. API Endpoints
Test key endpoints:
- `GET /` - Main interface
- `POST /upload` - File upload
- `GET /models` - List models
- `WebSocket /ws/{session_id}` - Real-time updates
## π Troubleshooting
### Build Failures
**PyTorch Installation Issues:**
```bash
# Check if CUDA version is compatible
# Update requirements.txt if needed
torch==2.1.0+cu118
```
**Memory Issues During Build:**
- Upgrade to higher hardware tier
- Reduce dependency versions
- Remove unnecessary packages
### Runtime Issues
**Out of Memory:**
- Increase hardware tier
- Reduce batch size in training
- Implement model sharding
**Model Loading Failures:**
- Check file format compatibility
- Verify Hugging Face model exists
- Ensure sufficient disk space
**WebSocket Connection Issues:**
- Check browser compatibility
- Verify firewall settings
- Try refreshing the page
### Performance Issues
**Slow Training:**
- Upgrade to GPU hardware
- Increase batch size
- Use mixed precision training
**High Memory Usage:**
- Monitor system resources
- Implement automatic cleanup
- Reduce model cache size
## π Monitoring and Maintenance
### Logs and Monitoring
- Check Space logs regularly
- Monitor resource usage
- Set up alerts for failures
### Updates and Maintenance
- Keep dependencies updated
- Monitor for security issues
- Regular cleanup of temporary files
### Scaling Considerations
- Monitor user load
- Consider multiple Space instances
- Implement load balancing if needed
## π Security Best Practices
### File Upload Security
- Validate all uploaded files
- Implement size limits
- Scan for malicious content
### API Security
- Implement rate limiting
- Validate all inputs
- Use HTTPS only
### Resource Protection
- Monitor resource usage
- Implement timeouts
- Automatic cleanup procedures
## π Performance Optimization
### Model Loading
- Cache frequently used models
- Implement lazy loading
- Use model compression
### Training Optimization
- Use mixed precision
- Implement gradient checkpointing
- Optimize batch sizes
### Frontend Performance
- Minimize JavaScript bundle
- Optimize CSS delivery
- Use CDN for static assets
## π― Success Metrics
Your deployment is successful when:
β
**Functionality**
- All API endpoints respond correctly
- File uploads work without errors
- Training completes successfully
- Model downloads work properly
β
**Performance**
- Page loads in < 3 seconds
- Training starts within 30 seconds
- Real-time updates work smoothly
- Resource usage is within limits
β
**User Experience**
- Interface is responsive on all devices
- Error messages are clear and helpful
- Progress tracking works accurately
- Documentation is accessible
## π Support and Resources
- **Hugging Face Spaces Documentation**: [https://huggingface.co/docs/hub/spaces](https://huggingface.co/docs/hub/spaces)
- **FastAPI Documentation**: [https://fastapi.tiangolo.com/](https://fastapi.tiangolo.com/)
- **PyTorch Documentation**: [https://pytorch.org/docs/](https://pytorch.org/docs/)
---
**Your Multi-Modal Knowledge Distillation application is now ready for production deployment! π**
|