Spaces:
Running
Running
File size: 12,339 Bytes
ab4e093 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
"""
Database models for the AI Knowledge Distillation Platform
"""
from dataclasses import dataclass
from typing import Optional, Dict, Any, List
from datetime import datetime
import json
@dataclass
class TokenModel:
"""Model for HF token storage"""
id: Optional[int] = None
name: str = ""
token_type: str = "read"
encrypted_token: str = ""
is_default: bool = False
description: str = ""
created_at: Optional[datetime] = None
last_used: Optional[datetime] = None
usage_count: int = 0
is_active: bool = True
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary"""
return {
'id': self.id,
'name': self.name,
'token_type': self.token_type,
'encrypted_token': self.encrypted_token,
'is_default': self.is_default,
'description': self.description,
'created_at': self.created_at.isoformat() if self.created_at else None,
'last_used': self.last_used.isoformat() if self.last_used else None,
'usage_count': self.usage_count,
'is_active': self.is_active
}
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> 'TokenModel':
"""Create from dictionary"""
return cls(
id=data.get('id'),
name=data.get('name', ''),
token_type=data.get('token_type', 'read'),
encrypted_token=data.get('encrypted_token', ''),
is_default=data.get('is_default', False),
description=data.get('description', ''),
created_at=datetime.fromisoformat(data['created_at']) if data.get('created_at') else None,
last_used=datetime.fromisoformat(data['last_used']) if data.get('last_used') else None,
usage_count=data.get('usage_count', 0),
is_active=data.get('is_active', True)
)
@dataclass
class TrainingSessionModel:
"""Model for training session data"""
id: Optional[int] = None
session_id: str = ""
teacher_model: str = ""
student_model: str = ""
dataset_name: Optional[str] = None
training_type: str = "knowledge_distillation"
status: str = "initialized"
progress: float = 0.0
current_step: int = 0
total_steps: Optional[int] = None
current_loss: Optional[float] = None
best_loss: Optional[float] = None
learning_rate: Optional[float] = None
batch_size: Optional[int] = None
temperature: Optional[float] = None
alpha: Optional[float] = None
created_at: Optional[datetime] = None
started_at: Optional[datetime] = None
completed_at: Optional[datetime] = None
error_message: Optional[str] = None
config: Optional[Dict[str, Any]] = None
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary"""
return {
'id': self.id,
'session_id': self.session_id,
'teacher_model': self.teacher_model,
'student_model': self.student_model,
'dataset_name': self.dataset_name,
'training_type': self.training_type,
'status': self.status,
'progress': self.progress,
'current_step': self.current_step,
'total_steps': self.total_steps,
'current_loss': self.current_loss,
'best_loss': self.best_loss,
'learning_rate': self.learning_rate,
'batch_size': self.batch_size,
'temperature': self.temperature,
'alpha': self.alpha,
'created_at': self.created_at.isoformat() if self.created_at else None,
'started_at': self.started_at.isoformat() if self.started_at else None,
'completed_at': self.completed_at.isoformat() if self.completed_at else None,
'error_message': self.error_message,
'config': self.config
}
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> 'TrainingSessionModel':
"""Create from dictionary"""
return cls(
id=data.get('id'),
session_id=data.get('session_id', ''),
teacher_model=data.get('teacher_model', ''),
student_model=data.get('student_model', ''),
dataset_name=data.get('dataset_name'),
training_type=data.get('training_type', 'knowledge_distillation'),
status=data.get('status', 'initialized'),
progress=data.get('progress', 0.0),
current_step=data.get('current_step', 0),
total_steps=data.get('total_steps'),
current_loss=data.get('current_loss'),
best_loss=data.get('best_loss'),
learning_rate=data.get('learning_rate'),
batch_size=data.get('batch_size'),
temperature=data.get('temperature'),
alpha=data.get('alpha'),
created_at=datetime.fromisoformat(data['created_at']) if data.get('created_at') else None,
started_at=datetime.fromisoformat(data['started_at']) if data.get('started_at') else None,
completed_at=datetime.fromisoformat(data['completed_at']) if data.get('completed_at') else None,
error_message=data.get('error_message'),
config=data.get('config')
)
def get_config_json(self) -> str:
"""Get config as JSON string"""
return json.dumps(self.config) if self.config else ""
def set_config_from_json(self, config_json: str):
"""Set config from JSON string"""
try:
self.config = json.loads(config_json) if config_json else None
except json.JSONDecodeError:
self.config = None
@dataclass
class PerformanceMetricModel:
"""Model for performance metrics"""
id: Optional[int] = None
timestamp: Optional[datetime] = None
metric_type: str = "system" # system, model, training
metric_name: str = ""
metric_value: float = 0.0
unit: str = ""
context: Optional[str] = None # Additional context (model name, session id, etc.)
metadata: Optional[Dict[str, Any]] = None
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary"""
return {
'id': self.id,
'timestamp': self.timestamp.isoformat() if self.timestamp else None,
'metric_type': self.metric_type,
'metric_name': self.metric_name,
'metric_value': self.metric_value,
'unit': self.unit,
'context': self.context,
'metadata': self.metadata
}
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> 'PerformanceMetricModel':
"""Create from dictionary"""
return cls(
id=data.get('id'),
timestamp=datetime.fromisoformat(data['timestamp']) if data.get('timestamp') else None,
metric_type=data.get('metric_type', 'system'),
metric_name=data.get('metric_name', ''),
metric_value=data.get('metric_value', 0.0),
unit=data.get('unit', ''),
context=data.get('context'),
metadata=data.get('metadata')
)
@dataclass
class MedicalDatasetModel:
"""Model for medical dataset information"""
id: Optional[int] = None
dataset_name: str = ""
repo_id: str = ""
description: str = ""
size_gb: float = 0.0
num_samples: int = 0
modalities: List[str] = None
specialties: List[str] = None
languages: List[str] = None
last_accessed: Optional[datetime] = None
access_count: int = 0
is_cached: bool = False
cache_path: Optional[str] = None
metadata: Optional[Dict[str, Any]] = None
def __post_init__(self):
"""Initialize default values"""
if self.modalities is None:
self.modalities = []
if self.specialties is None:
self.specialties = []
if self.languages is None:
self.languages = []
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary"""
return {
'id': self.id,
'dataset_name': self.dataset_name,
'repo_id': self.repo_id,
'description': self.description,
'size_gb': self.size_gb,
'num_samples': self.num_samples,
'modalities': self.modalities,
'specialties': self.specialties,
'languages': self.languages,
'last_accessed': self.last_accessed.isoformat() if self.last_accessed else None,
'access_count': self.access_count,
'is_cached': self.is_cached,
'cache_path': self.cache_path,
'metadata': self.metadata
}
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> 'MedicalDatasetModel':
"""Create from dictionary"""
return cls(
id=data.get('id'),
dataset_name=data.get('dataset_name', ''),
repo_id=data.get('repo_id', ''),
description=data.get('description', ''),
size_gb=data.get('size_gb', 0.0),
num_samples=data.get('num_samples', 0),
modalities=data.get('modalities', []),
specialties=data.get('specialties', []),
languages=data.get('languages', []),
last_accessed=datetime.fromisoformat(data['last_accessed']) if data.get('last_accessed') else None,
access_count=data.get('access_count', 0),
is_cached=data.get('is_cached', False),
cache_path=data.get('cache_path'),
metadata=data.get('metadata')
)
def get_modalities_string(self) -> str:
"""Get modalities as comma-separated string"""
return ','.join(self.modalities) if self.modalities else ""
def get_specialties_string(self) -> str:
"""Get specialties as comma-separated string"""
return ','.join(self.specialties) if self.specialties else ""
def get_languages_string(self) -> str:
"""Get languages as comma-separated string"""
return ','.join(self.languages) if self.languages else ""
def set_modalities_from_string(self, modalities_str: str):
"""Set modalities from comma-separated string"""
self.modalities = [m.strip() for m in modalities_str.split(',') if m.strip()] if modalities_str else []
def set_specialties_from_string(self, specialties_str: str):
"""Set specialties from comma-separated string"""
self.specialties = [s.strip() for s in specialties_str.split(',') if s.strip()] if specialties_str else []
def set_languages_from_string(self, languages_str: str):
"""Set languages from comma-separated string"""
self.languages = [l.strip() for l in languages_str.split(',') if l.strip()] if languages_str else []
@dataclass
class DicomFileModel:
"""Model for DICOM file information"""
id: Optional[int] = None
file_path: str = ""
patient_id: Optional[str] = None
study_date: Optional[str] = None
modality: Optional[str] = None
file_size_mb: float = 0.0
processed: bool = False
processed_at: Optional[datetime] = None
metadata: Optional[Dict[str, Any]] = None
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary"""
return {
'id': self.id,
'file_path': self.file_path,
'patient_id': self.patient_id,
'study_date': self.study_date,
'modality': self.modality,
'file_size_mb': self.file_size_mb,
'processed': self.processed,
'processed_at': self.processed_at.isoformat() if self.processed_at else None,
'metadata': self.metadata
}
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> 'DicomFileModel':
"""Create from dictionary"""
return cls(
id=data.get('id'),
file_path=data.get('file_path', ''),
patient_id=data.get('patient_id'),
study_date=data.get('study_date'),
modality=data.get('modality'),
file_size_mb=data.get('file_size_mb', 0.0),
processed=data.get('processed', False),
processed_at=datetime.fromisoformat(data['processed_at']) if data.get('processed_at') else None,
metadata=data.get('metadata')
)
|