Spaces:
Running
Running
File size: 13,600 Bytes
cca1fa9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
"""
Database Management System for Knowledge Distillation Platform
نظام إدارة قواعد البيانات لمنصة تقطير المعرفة
"""
import json
import logging
import os
from pathlib import Path
from typing import Dict, List, Any, Optional
from datetime import datetime
import asyncio
from datasets import load_dataset, Dataset
from huggingface_hub import list_datasets
logger = logging.getLogger(__name__)
class DatabaseManager:
"""
Comprehensive database management system for the platform
نظام إدارة قواعد البيانات الشامل للمنصة
"""
def __init__(self, storage_path: str = "data/databases"):
self.storage_path = Path(storage_path)
self.storage_path.mkdir(parents=True, exist_ok=True)
self.config_file = self.storage_path / "databases_config.json"
self.selected_databases_file = self.storage_path / "selected_databases.json"
# Load existing configuration
self.databases_config = self._load_config()
self.selected_databases = self._load_selected_databases()
logger.info(f"Database Manager initialized with {len(self.databases_config)} configured databases")
def _load_config(self) -> Dict[str, Any]:
"""Load databases configuration"""
try:
if self.config_file.exists():
with open(self.config_file, 'r', encoding='utf-8') as f:
return json.load(f)
else:
# Initialize with default medical datasets
default_config = self._get_default_medical_datasets()
self._save_config(default_config)
return default_config
except Exception as e:
logger.error(f"Error loading databases config: {e}")
return {}
def _save_config(self, config: Dict[str, Any]):
"""Save databases configuration"""
try:
with open(self.config_file, 'w', encoding='utf-8') as f:
json.dump(config, f, indent=2, ensure_ascii=False)
except Exception as e:
logger.error(f"Error saving databases config: {e}")
def _load_selected_databases(self) -> List[str]:
"""Load selected databases list"""
try:
if self.selected_databases_file.exists():
with open(self.selected_databases_file, 'r', encoding='utf-8') as f:
return json.load(f)
else:
return []
except Exception as e:
logger.error(f"Error loading selected databases: {e}")
return []
def _save_selected_databases(self):
"""Save selected databases list"""
try:
with open(self.selected_databases_file, 'w', encoding='utf-8') as f:
json.dump(self.selected_databases, f, indent=2, ensure_ascii=False)
except Exception as e:
logger.error(f"Error saving selected databases: {e}")
def _get_default_medical_datasets(self) -> Dict[str, Any]:
"""Get default medical datasets configuration"""
return {
"medical_meadow_medical_flashcards": {
"name": "Medical Meadow Medical Flashcards",
"name_ar": "بطاقات تعليمية طبية",
"dataset_id": "medalpaca/medical_meadow_medical_flashcards",
"category": "medical",
"description": "Medical flashcards for educational purposes",
"description_ar": "بطاقات تعليمية طبية لأغراض التعليم",
"size": "~50MB",
"language": "English",
"modality": "text",
"license": "Apache 2.0",
"added_date": datetime.now().isoformat(),
"status": "available"
},
"pubmed_qa": {
"name": "PubMed QA",
"name_ar": "أسئلة وأجوبة PubMed",
"dataset_id": "pubmed_qa",
"category": "medical",
"description": "Question answering dataset based on PubMed abstracts",
"description_ar": "مجموعة بيانات أسئلة وأجوبة مبنية على ملخصات PubMed",
"size": "~100MB",
"language": "English",
"modality": "text",
"license": "MIT",
"added_date": datetime.now().isoformat(),
"status": "available"
},
"medical_dialog": {
"name": "Medical Dialog",
"name_ar": "حوارات طبية",
"dataset_id": "medical_dialog",
"category": "medical",
"description": "Medical conversation dataset",
"description_ar": "مجموعة بيانات المحادثات الطبية",
"size": "~200MB",
"language": "English/Chinese",
"modality": "text",
"license": "CC BY 4.0",
"added_date": datetime.now().isoformat(),
"status": "available"
}
}
async def search_huggingface_datasets(self, query: str, limit: int = 20) -> List[Dict[str, Any]]:
"""Search for datasets on Hugging Face"""
try:
logger.info(f"Searching Hugging Face for datasets: {query}")
# Search datasets
datasets = list_datasets(search=query, limit=limit)
results = []
for dataset in datasets:
try:
dataset_info = {
"id": dataset.id,
"name": dataset.id.split('/')[-1],
"author": dataset.author if hasattr(dataset, 'author') else dataset.id.split('/')[0],
"description": getattr(dataset, 'description', 'No description available'),
"tags": getattr(dataset, 'tags', []),
"downloads": getattr(dataset, 'downloads', 0),
"likes": getattr(dataset, 'likes', 0),
"created_at": getattr(dataset, 'created_at', None),
"last_modified": getattr(dataset, 'last_modified', None)
}
results.append(dataset_info)
except Exception as e:
logger.warning(f"Error processing dataset {dataset.id}: {e}")
continue
logger.info(f"Found {len(results)} datasets")
return results
except Exception as e:
logger.error(f"Error searching Hugging Face datasets: {e}")
return []
async def add_database(self, database_info: Dict[str, Any]) -> bool:
"""Add a new database to the configuration"""
try:
database_id = database_info.get('dataset_id') or database_info.get('id')
if not database_id:
raise ValueError("Database ID is required")
# Validate dataset exists and is accessible
validation_result = await self.validate_dataset(database_id)
if not validation_result['valid']:
raise ValueError(f"Dataset validation failed: {validation_result['error']}")
# Prepare database configuration
config = {
"name": database_info.get('name', database_id.split('/')[-1]),
"name_ar": database_info.get('name_ar', ''),
"dataset_id": database_id,
"category": database_info.get('category', 'general'),
"description": database_info.get('description', ''),
"description_ar": database_info.get('description_ar', ''),
"size": database_info.get('size', 'Unknown'),
"language": database_info.get('language', 'Unknown'),
"modality": database_info.get('modality', 'text'),
"license": database_info.get('license', 'Unknown'),
"added_date": datetime.now().isoformat(),
"status": "available",
"validation": validation_result
}
# Add to configuration
self.databases_config[database_id] = config
self._save_config(self.databases_config)
logger.info(f"Added database: {database_id}")
return True
except Exception as e:
logger.error(f"Error adding database: {e}")
return False
async def validate_dataset(self, dataset_id: str) -> Dict[str, Any]:
"""Validate that a dataset exists and is accessible"""
try:
logger.info(f"Validating dataset: {dataset_id}")
# Try to load dataset info
dataset = load_dataset(dataset_id, split="train", streaming=True)
# Get basic info
sample = next(iter(dataset))
features = list(sample.keys()) if sample else []
return {
"valid": True,
"features": features,
"sample_keys": features,
"accessible": True,
"error": None
}
except Exception as e:
logger.warning(f"Dataset validation failed for {dataset_id}: {e}")
return {
"valid": False,
"features": [],
"sample_keys": [],
"accessible": False,
"error": str(e)
}
def get_all_databases(self) -> Dict[str, Any]:
"""Get all configured databases"""
return self.databases_config
def get_selected_databases(self) -> List[str]:
"""Get list of selected database IDs"""
return self.selected_databases
def select_database(self, database_id: str) -> bool:
"""Select a database for use"""
try:
if database_id not in self.databases_config:
raise ValueError(f"Database {database_id} not found in configuration")
if database_id not in self.selected_databases:
self.selected_databases.append(database_id)
self._save_selected_databases()
logger.info(f"Selected database: {database_id}")
return True
except Exception as e:
logger.error(f"Error selecting database: {e}")
return False
def deselect_database(self, database_id: str) -> bool:
"""Deselect a database"""
try:
if database_id in self.selected_databases:
self.selected_databases.remove(database_id)
self._save_selected_databases()
logger.info(f"Deselected database: {database_id}")
return True
except Exception as e:
logger.error(f"Error deselecting database: {e}")
return False
def remove_database(self, database_id: str) -> bool:
"""Remove a database from configuration"""
try:
if database_id in self.databases_config:
del self.databases_config[database_id]
self._save_config(self.databases_config)
if database_id in self.selected_databases:
self.selected_databases.remove(database_id)
self._save_selected_databases()
logger.info(f"Removed database: {database_id}")
return True
except Exception as e:
logger.error(f"Error removing database: {e}")
return False
def get_database_info(self, database_id: str) -> Optional[Dict[str, Any]]:
"""Get detailed information about a specific database"""
return self.databases_config.get(database_id)
def get_databases_by_category(self, category: str) -> Dict[str, Any]:
"""Get databases filtered by category"""
return {
db_id: db_info
for db_id, db_info in self.databases_config.items()
if db_info.get('category') == category
}
async def load_selected_datasets(self, max_samples: int = 1000) -> Dict[str, Any]:
"""Load data from selected datasets"""
loaded_datasets = {}
for database_id in self.selected_databases:
try:
logger.info(f"Loading dataset: {database_id}")
dataset = load_dataset(database_id, split="train", streaming=True)
samples = list(dataset.take(max_samples))
loaded_datasets[database_id] = {
"samples": samples,
"count": len(samples),
"info": self.databases_config.get(database_id, {})
}
logger.info(f"Loaded {len(samples)} samples from {database_id}")
except Exception as e:
logger.error(f"Error loading dataset {database_id}: {e}")
loaded_datasets[database_id] = {
"samples": [],
"count": 0,
"error": str(e),
"info": self.databases_config.get(database_id, {})
}
return loaded_datasets
|