File size: 14,578 Bytes
ab4e093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
"""
Medical Dataset Manager for handling specialized medical datasets
Optimized for memory-constrained environments with streaming support
"""

import os
import logging
import asyncio
from typing import Dict, Any, List, Optional, Iterator, Tuple
from pathlib import Path
import torch
from torch.utils.data import Dataset, DataLoader
from datasets import load_dataset, Dataset as HFDataset
import numpy as np
from PIL import Image
import json
from ..core.memory_manager import AdvancedMemoryManager

logger = logging.getLogger(__name__)

class MedicalDatasetManager:
    """
    Manager for medical datasets with memory-efficient streaming
    """
    
    # Supported medical datasets configuration
    SUPPORTED_DATASETS = {
        'roco_v2': {
            'name': 'ROCOv2 Radiology',
            'repo_id': 'eltorio/ROCOv2-radiology',
            'description': 'صور شعاعية مع تقارير طبية مفصلة',
            'modalities': ['radiology', 'text'],
            'size_gb': 8.5,
            'num_samples': 81000,
            'languages': ['en', 'ar'],
            'medical_specialties': ['radiology', 'general'],
            'data_format': 'image_text_pairs',
            'streaming_supported': True
        },
        'ct_rate': {
            'name': 'CT-RATE',
            'repo_id': 'ibrahimhamamci/CT-RATE',
            'description': 'صور CT مع تقييمات وتشخيصات',
            'modalities': ['ct_scan', 'text'],
            'size_gb': 12.3,
            'num_samples': 50000,
            'languages': ['en'],
            'medical_specialties': ['radiology', 'emergency', 'internal_medicine'],
            'data_format': 'image_text_pairs',
            'streaming_supported': True
        },
        'umie_datasets': {
            'name': 'UMIE Medical Datasets',
            'repo_id': 'lion-ai/umie_datasets',
            'description': 'بيانات طبية متنوعة ومتعددة الوسائط',
            'modalities': ['multimodal', 'text', 'imaging'],
            'size_gb': 15.7,
            'num_samples': 120000,
            'languages': ['en', 'ar', 'fr'],
            'medical_specialties': ['general', 'cardiology', 'neurology', 'oncology'],
            'data_format': 'multimodal',
            'streaming_supported': True
        }
    }
    
    def __init__(self, memory_manager: AdvancedMemoryManager,
                 cache_dir: str = "cache/medical_datasets"):
        """
        Initialize medical dataset manager
        
        Args:
            memory_manager: Memory manager instance
            cache_dir: Directory for caching datasets
        """
        self.memory_manager = memory_manager
        self.cache_dir = Path(cache_dir)
        self.cache_dir.mkdir(parents=True, exist_ok=True)
        
        self.loaded_datasets = {}
        self.streaming_datasets = {}
        
        logger.info("Medical Dataset Manager initialized")
    
    async def load_dataset(self, dataset_name: str, 
                          streaming: bool = True,
                          subset: Optional[str] = None,
                          split: str = 'train',
                          **kwargs) -> Dict[str, Any]:
        """
        Load medical dataset with memory optimization
        
        Args:
            dataset_name: Name of dataset to load
            streaming: Whether to use streaming mode
            subset: Specific subset to load
            split: Dataset split to load
            **kwargs: Additional loading parameters
            
        Returns:
            Dataset information and loader
        """
        if dataset_name not in self.SUPPORTED_DATASETS:
            raise ValueError(f"Unsupported dataset: {dataset_name}")
        
        dataset_config = self.SUPPORTED_DATASETS[dataset_name]
        
        with self.memory_manager.memory_context(f"load_dataset_{dataset_name}"):
            logger.info(f"Loading medical dataset: {dataset_config['name']}")
            
            try:
                # Get HF token
                hf_token = kwargs.get('token') or os.getenv('HF_TOKEN')
                
                if streaming and dataset_config['streaming_supported']:
                    # Load in streaming mode
                    dataset = await self._load_streaming_dataset(
                        dataset_config, split, hf_token, **kwargs
                    )
                else:
                    # Load full dataset (with memory management)
                    dataset = await self._load_full_dataset(
                        dataset_config, split, hf_token, **kwargs
                    )
                
                # Create data loader
                data_loader = await self._create_medical_dataloader(
                    dataset, dataset_config, **kwargs
                )
                
                result = {
                    'dataset': dataset,
                    'data_loader': data_loader,
                    'config': dataset_config,
                    'streaming': streaming,
                    'split': split,
                    'estimated_size_gb': dataset_config['size_gb']
                }
                
                self.loaded_datasets[dataset_name] = result
                return result
                
            except Exception as e:
                logger.error(f"Failed to load dataset {dataset_name}: {e}")
                raise
    
    async def _load_streaming_dataset(self, dataset_config: Dict[str, Any],
                                     split: str, hf_token: Optional[str],
                                     **kwargs) -> HFDataset:
        """Load dataset in streaming mode"""
        logger.info(f"Loading {dataset_config['name']} in streaming mode")
        
        try:
            dataset = load_dataset(
                dataset_config['repo_id'],
                split=split,
                streaming=True,
                token=hf_token,
                cache_dir=str(self.cache_dir)
            )
            
            logger.info(f"Successfully loaded streaming dataset: {dataset_config['name']}")
            return dataset
            
        except Exception as e:
            logger.error(f"Failed to load streaming dataset: {e}")
            raise
    
    async def _load_full_dataset(self, dataset_config: Dict[str, Any],
                                split: str, hf_token: Optional[str],
                                **kwargs) -> HFDataset:
        """Load full dataset with memory management"""
        logger.info(f"Loading {dataset_config['name']} in full mode")
        
        # Check available memory
        memory_info = self.memory_manager.get_memory_info()
        estimated_memory_needed_gb = dataset_config['size_gb'] * 1.5  # 50% overhead
        
        if estimated_memory_needed_gb > memory_info['system_memory_available_gb']:
            logger.warning(f"Dataset may exceed available memory. Consider streaming mode.")
        
        try:
            dataset = load_dataset(
                dataset_config['repo_id'],
                split=split,
                streaming=False,
                token=hf_token,
                cache_dir=str(self.cache_dir)
            )
            
            logger.info(f"Successfully loaded full dataset: {dataset_config['name']}")
            return dataset
            
        except Exception as e:
            logger.error(f"Failed to load full dataset: {e}")
            raise
    
    async def _create_medical_dataloader(self, dataset: HFDataset,
                                        dataset_config: Dict[str, Any],
                                        **kwargs) -> DataLoader:
        """Create optimized DataLoader for medical data"""
        
        batch_size = kwargs.get('batch_size', 4)  # Small batch for memory efficiency
        num_workers = min(2, os.cpu_count() // 2)  # Conservative worker count
        
        # Optimize batch size based on available memory
        memory_info = self.memory_manager.get_memory_info()
        if memory_info['system_memory_available_gb'] < 4:
            batch_size = min(batch_size, 2)
        
        # Create custom collate function for medical data
        collate_fn = self._create_medical_collate_fn(dataset_config)
        
        # For streaming datasets, we need a different approach
        if hasattr(dataset, 'iter'):
            # Streaming dataset
            return MedicalStreamingDataLoader(
                dataset, batch_size, collate_fn, self.memory_manager
            )
        else:
            # Regular dataset
            return DataLoader(
                dataset,
                batch_size=batch_size,
                shuffle=kwargs.get('shuffle', True),
                num_workers=num_workers,
                collate_fn=collate_fn,
                pin_memory=False,  # CPU only
                drop_last=True
            )
    
    def _create_medical_collate_fn(self, dataset_config: Dict[str, Any]):
        """Create collate function for medical data"""
        
        def medical_collate_fn(batch):
            """Custom collate function for medical datasets"""
            try:
                if dataset_config['data_format'] == 'image_text_pairs':
                    images = []
                    texts = []
                    
                    for item in batch:
                        # Handle image data
                        if 'image' in item:
                            image = item['image']
                            if isinstance(image, Image.Image):
                                # Convert PIL image to tensor
                                image_array = np.array(image)
                                if len(image_array.shape) == 3:
                                    image_tensor = torch.from_numpy(image_array).permute(2, 0, 1).float() / 255.0
                                else:
                                    image_tensor = torch.from_numpy(image_array).unsqueeze(0).float() / 255.0
                                images.append(image_tensor)
                        
                        # Handle text data
                        if 'text' in item or 'caption' in item or 'report' in item:
                            text = item.get('text', item.get('caption', item.get('report', '')))
                            texts.append(str(text))
                    
                    return {
                        'images': torch.stack(images) if images else None,
                        'texts': texts,
                        'batch_size': len(batch)
                    }
                
                else:
                    # Generic multimodal handling
                    return {
                        'data': batch,
                        'batch_size': len(batch)
                    }
                    
            except Exception as e:
                logger.error(f"Error in collate function: {e}")
                # Return minimal batch on error
                return {
                    'data': batch,
                    'batch_size': len(batch),
                    'error': str(e)
                }
        
        return medical_collate_fn
    
    def get_dataset_info(self, dataset_name: str) -> Dict[str, Any]:
        """Get information about a supported dataset"""
        if dataset_name not in self.SUPPORTED_DATASETS:
            raise ValueError(f"Unsupported dataset: {dataset_name}")
        
        return self.SUPPORTED_DATASETS[dataset_name].copy()
    
    def list_supported_datasets(self) -> List[Dict[str, Any]]:
        """List all supported medical datasets"""
        return [
            {
                'key': key,
                **config
            }
            for key, config in self.SUPPORTED_DATASETS.items()
        ]
    
    async def preprocess_medical_batch(self, batch: Dict[str, Any],
                                      dataset_config: Dict[str, Any]) -> Dict[str, Any]:
        """Preprocess medical data batch"""
        
        processed_batch = {}
        
        # Handle images
        if 'images' in batch and batch['images'] is not None:
            images = batch['images']
            
            # Resize images to standard size for memory efficiency
            if images.shape[-1] > 512 or images.shape[-2] > 512:
                images = torch.nn.functional.interpolate(
                    images, size=(512, 512), mode='bilinear', align_corners=False
                )
            
            processed_batch['images'] = images
        
        # Handle texts
        if 'texts' in batch:
            texts = batch['texts']
            
            # Truncate long texts to save memory
            max_length = 512
            truncated_texts = []
            for text in texts:
                if len(text) > max_length:
                    text = text[:max_length] + "..."
                truncated_texts.append(text)
            
            processed_batch['texts'] = truncated_texts
        
        processed_batch['batch_size'] = batch.get('batch_size', 0)
        
        return processed_batch
    
    def cleanup_datasets(self):
        """Cleanup loaded datasets to free memory"""
        logger.info("Cleaning up medical datasets")
        
        for dataset_name in list(self.loaded_datasets.keys()):
            del self.loaded_datasets[dataset_name]
        
        self.loaded_datasets.clear()
        self.streaming_datasets.clear()
        
        # Force garbage collection
        import gc
        gc.collect()
        
        logger.info("Medical datasets cleanup completed")

class MedicalStreamingDataLoader:
    """Custom streaming data loader for medical datasets"""
    
    def __init__(self, dataset, batch_size: int, collate_fn, memory_manager):
        self.dataset = dataset
        self.batch_size = batch_size
        self.collate_fn = collate_fn
        self.memory_manager = memory_manager
    
    def __iter__(self):
        batch = []
        
        for item in self.dataset:
            batch.append(item)
            
            if len(batch) >= self.batch_size:
                # Check memory before yielding batch
                status = self.memory_manager.check_memory_status()
                if status in ['critical', 'emergency']:
                    self.memory_manager.force_cleanup()
                
                yield self.collate_fn(batch)
                batch = []
        
        # Yield remaining items
        if batch:
            yield self.collate_fn(batch)