File size: 15,594 Bytes
ab4e093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
"""
Medical Data Preprocessing for AI training
Optimized for medical images and text with memory constraints
"""

import logging
import numpy as np
from typing import Dict, Any, List, Optional, Tuple
import torch
import torch.nn.functional as F
from PIL import Image, ImageEnhance, ImageFilter
import cv2
import re

logger = logging.getLogger(__name__)

class MedicalPreprocessor:
    """
    Medical data preprocessor with memory optimization
    """
    
    def __init__(self, target_size: Tuple[int, int] = (512, 512),
                 normalize_images: bool = True):
        """
        Initialize medical preprocessor
        
        Args:
            target_size: Target size for image resizing
            normalize_images: Whether to normalize images
        """
        self.target_size = target_size
        self.normalize_images = normalize_images
        
        # Medical text preprocessing patterns
        self.medical_patterns = {
            'measurements': r'\d+\.?\d*\s*(mm|cm|m|ml|l|kg|g|mg)',
            'dates': r'\d{1,2}[/-]\d{1,2}[/-]\d{2,4}',
            'times': r'\d{1,2}:\d{2}(?::\d{2})?',
            'medical_codes': r'[A-Z]\d{2}\.?\d*',
            'dosages': r'\d+\.?\d*\s*(mg|g|ml|units?)',
        }
        
        # Common medical abbreviations
        self.medical_abbreviations = {
            'pt': 'patient',
            'pts': 'patients', 
            'dx': 'diagnosis',
            'tx': 'treatment',
            'hx': 'history',
            'sx': 'symptoms',
            'rx': 'prescription',
            'w/': 'with',
            'w/o': 'without',
            'c/o': 'complains of',
            'r/o': 'rule out',
            's/p': 'status post',
            'nkda': 'no known drug allergies',
            'sob': 'shortness of breath',
            'cp': 'chest pain',
            'abd': 'abdomen',
            'ext': 'extremities'
        }
        
        logger.info(f"Medical Preprocessor initialized with target size {target_size}")
    
    def preprocess_medical_image(self, image: torch.Tensor,
                                modality: str = 'unknown',
                                enhance_contrast: bool = True) -> torch.Tensor:
        """
        Preprocess medical image with modality-specific optimizations
        
        Args:
            image: Input image tensor
            modality: Medical imaging modality (CT, MRI, X-ray, etc.)
            enhance_contrast: Whether to enhance contrast
            
        Returns:
            Preprocessed image tensor
        """
        try:
            # Ensure image is float tensor
            if image.dtype != torch.float32:
                image = image.float()
            
            # Handle different input shapes
            if len(image.shape) == 2:
                image = image.unsqueeze(0)  # Add channel dimension
            elif len(image.shape) == 4:
                image = image.squeeze(0)  # Remove batch dimension if present
            
            # Resize to target size
            if image.shape[-2:] != self.target_size:
                image = F.interpolate(
                    image.unsqueeze(0), 
                    size=self.target_size, 
                    mode='bilinear', 
                    align_corners=False
                ).squeeze(0)
            
            # Apply modality-specific preprocessing
            image = self._apply_modality_specific_processing(image, modality)
            
            # Enhance contrast if requested
            if enhance_contrast:
                image = self._enhance_medical_image_contrast(image)
            
            # Normalize if requested
            if self.normalize_images:
                image = self._normalize_medical_image(image)
            
            # Ensure proper range [0, 1]
            image = torch.clamp(image, 0.0, 1.0)
            
            return image
            
        except Exception as e:
            logger.error(f"Error preprocessing medical image: {e}")
            # Return dummy image on error
            return torch.zeros(1, *self.target_size)
    
    def _apply_modality_specific_processing(self, image: torch.Tensor, 
                                          modality: str) -> torch.Tensor:
        """Apply modality-specific image processing"""
        modality_lower = modality.lower()
        
        try:
            if 'ct' in modality_lower:
                # CT scan specific processing
                image = self._process_ct_image(image)
            elif 'mri' in modality_lower:
                # MRI specific processing
                image = self._process_mri_image(image)
            elif 'xray' in modality_lower or 'x-ray' in modality_lower:
                # X-ray specific processing
                image = self._process_xray_image(image)
            elif 'ultrasound' in modality_lower:
                # Ultrasound specific processing
                image = self._process_ultrasound_image(image)
            
            return image
            
        except Exception as e:
            logger.warning(f"Error in modality-specific processing for {modality}: {e}")
            return image
    
    def _process_ct_image(self, image: torch.Tensor) -> torch.Tensor:
        """Process CT scan images"""
        # CT images often need windowing adjustments
        # Apply soft tissue window as default
        image = torch.clamp(image, 0.0, 1.0)
        
        # Enhance contrast for better tissue differentiation
        image = self._apply_gamma_correction(image, gamma=0.8)
        
        return image
    
    def _process_mri_image(self, image: torch.Tensor) -> torch.Tensor:
        """Process MRI images"""
        # MRI images often have good contrast already
        # Apply mild enhancement
        image = self._apply_gamma_correction(image, gamma=0.9)
        
        return image
    
    def _process_xray_image(self, image: torch.Tensor) -> torch.Tensor:
        """Process X-ray images"""
        # X-rays often need contrast enhancement
        image = self._enhance_medical_image_contrast(image, factor=1.2)
        
        # Apply histogram equalization equivalent
        image = self._apply_histogram_equalization(image)
        
        return image
    
    def _process_ultrasound_image(self, image: torch.Tensor) -> torch.Tensor:
        """Process ultrasound images"""
        # Ultrasound images often need noise reduction
        image = self._apply_noise_reduction(image)
        
        return image
    
    def _enhance_medical_image_contrast(self, image: torch.Tensor, 
                                      factor: float = 1.1) -> torch.Tensor:
        """Enhance contrast of medical images"""
        try:
            # Apply contrast enhancement
            mean_val = torch.mean(image)
            enhanced = (image - mean_val) * factor + mean_val
            
            return torch.clamp(enhanced, 0.0, 1.0)
            
        except Exception as e:
            logger.warning(f"Error enhancing contrast: {e}")
            return image
    
    def _apply_gamma_correction(self, image: torch.Tensor, 
                               gamma: float = 1.0) -> torch.Tensor:
        """Apply gamma correction to image"""
        try:
            return torch.pow(image, gamma)
        except Exception as e:
            logger.warning(f"Error applying gamma correction: {e}")
            return image
    
    def _apply_histogram_equalization(self, image: torch.Tensor) -> torch.Tensor:
        """Apply histogram equalization equivalent"""
        try:
            # Convert to numpy for processing
            image_np = image.squeeze().numpy()
            
            # Apply CLAHE (Contrast Limited Adaptive Histogram Equalization)
            clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
            
            # Convert to uint8 for CLAHE
            image_uint8 = (image_np * 255).astype(np.uint8)
            equalized = clahe.apply(image_uint8)
            
            # Convert back to tensor
            result = torch.from_numpy(equalized.astype(np.float32) / 255.0)
            
            # Restore original shape
            if len(image.shape) == 3:
                result = result.unsqueeze(0)
            
            return result
            
        except Exception as e:
            logger.warning(f"Error applying histogram equalization: {e}")
            return image
    
    def _apply_noise_reduction(self, image: torch.Tensor) -> torch.Tensor:
        """Apply noise reduction to image"""
        try:
            # Simple Gaussian blur for noise reduction
            kernel_size = 3
            sigma = 0.5
            
            # Create Gaussian kernel
            kernel = self._create_gaussian_kernel(kernel_size, sigma)
            kernel = kernel.unsqueeze(0).unsqueeze(0)  # Add batch and channel dims
            
            # Apply convolution
            if len(image.shape) == 3:
                image_input = image.unsqueeze(0)  # Add batch dimension
            else:
                image_input = image
            
            filtered = F.conv2d(image_input, kernel, padding=kernel_size//2)
            
            # Remove batch dimension if added
            if len(image.shape) == 3:
                filtered = filtered.squeeze(0)
            
            return filtered
            
        except Exception as e:
            logger.warning(f"Error applying noise reduction: {e}")
            return image
    
    def _create_gaussian_kernel(self, kernel_size: int, sigma: float) -> torch.Tensor:
        """Create Gaussian kernel for filtering"""
        coords = torch.arange(kernel_size, dtype=torch.float32)
        coords -= kernel_size // 2
        
        g = torch.exp(-(coords ** 2) / (2 * sigma ** 2))
        g /= g.sum()
        
        # Create 2D kernel
        kernel = g[:, None] * g[None, :]
        
        return kernel
    
    def _normalize_medical_image(self, image: torch.Tensor) -> torch.Tensor:
        """Normalize medical image"""
        try:
            # Z-score normalization per image
            mean_val = torch.mean(image)
            std_val = torch.std(image)
            
            if std_val > 0:
                normalized = (image - mean_val) / std_val
                # Scale to [0, 1] range
                normalized = (normalized - normalized.min()) / (normalized.max() - normalized.min())
            else:
                normalized = image
            
            return normalized
            
        except Exception as e:
            logger.warning(f"Error normalizing image: {e}")
            return image
    
    def preprocess_medical_text(self, text: str, 
                               expand_abbreviations: bool = True,
                               remove_phi: bool = True) -> str:
        """
        Preprocess medical text
        
        Args:
            text: Input medical text
            expand_abbreviations: Whether to expand medical abbreviations
            remove_phi: Whether to remove potential PHI (Protected Health Information)
            
        Returns:
            Preprocessed text
        """
        try:
            if not isinstance(text, str):
                text = str(text)
            
            # Convert to lowercase for processing
            processed_text = text.lower()
            
            # Remove potential PHI if requested
            if remove_phi:
                processed_text = self._remove_phi(processed_text)
            
            # Expand medical abbreviations
            if expand_abbreviations:
                processed_text = self._expand_medical_abbreviations(processed_text)
            
            # Clean up text
            processed_text = self._clean_medical_text(processed_text)
            
            # Limit length to prevent memory issues
            max_length = 2048
            if len(processed_text) > max_length:
                processed_text = processed_text[:max_length] + "..."
            
            return processed_text
            
        except Exception as e:
            logger.error(f"Error preprocessing medical text: {e}")
            return text  # Return original text on error
    
    def _remove_phi(self, text: str) -> str:
        """Remove potential Protected Health Information"""
        # Remove dates
        text = re.sub(self.medical_patterns['dates'], '[DATE]', text)
        
        # Remove times
        text = re.sub(self.medical_patterns['times'], '[TIME]', text)
        
        # Remove phone numbers
        text = re.sub(r'\b\d{3}[-.]?\d{3}[-.]?\d{4}\b', '[PHONE]', text)
        
        # Remove email addresses
        text = re.sub(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', '[EMAIL]', text)
        
        # Remove potential names (very basic - would need more sophisticated NER in practice)
        text = re.sub(r'\b[A-Z][a-z]+ [A-Z][a-z]+\b', '[NAME]', text)
        
        return text
    
    def _expand_medical_abbreviations(self, text: str) -> str:
        """Expand common medical abbreviations"""
        for abbrev, expansion in self.medical_abbreviations.items():
            # Use word boundaries to avoid partial matches
            pattern = r'\b' + re.escape(abbrev) + r'\b'
            text = re.sub(pattern, expansion, text, flags=re.IGNORECASE)
        
        return text
    
    def _clean_medical_text(self, text: str) -> str:
        """Clean and normalize medical text"""
        # Remove extra whitespace
        text = re.sub(r'\s+', ' ', text)
        
        # Remove special characters but keep medical-relevant ones
        text = re.sub(r'[^\w\s\-\.\,\:\;\(\)\/\%]', '', text)
        
        # Strip leading/trailing whitespace
        text = text.strip()
        
        return text
    
    def batch_preprocess_medical_data(self, batch: Dict[str, Any]) -> Dict[str, Any]:
        """Preprocess a batch of medical data"""
        processed_batch = {}
        
        try:
            # Process images if present
            if 'images' in batch and batch['images'] is not None:
                images = batch['images']
                processed_images = []
                
                for i, image in enumerate(images):
                    # Get modality if available
                    modality = 'unknown'
                    if 'modalities' in batch and i < len(batch['modalities']):
                        modality = batch['modalities'][i]
                    
                    processed_image = self.preprocess_medical_image(image, modality)
                    processed_images.append(processed_image)
                
                processed_batch['images'] = torch.stack(processed_images)
            
            # Process texts if present
            if 'texts' in batch:
                texts = batch['texts']
                processed_texts = []
                
                for text in texts:
                    processed_text = self.preprocess_medical_text(text)
                    processed_texts.append(processed_text)
                
                processed_batch['texts'] = processed_texts
            
            # Copy other fields
            for key, value in batch.items():
                if key not in ['images', 'texts']:
                    processed_batch[key] = value
            
            return processed_batch
            
        except Exception as e:
            logger.error(f"Error in batch preprocessing: {e}")
            return batch  # Return original batch on error