File size: 36,771 Bytes
ab4e093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
"""
Model Loading Utilities

Provides comprehensive model loading capabilities for various formats and sources
including PyTorch models, Safetensors, and Hugging Face transformers.
"""

import os
import logging
import asyncio
from typing import Dict, Any, Optional, Union, List
from pathlib import Path
import json
import requests
from urllib.parse import urlparse
import tempfile
import shutil

import torch
import torch.nn as nn
from transformers import (
    AutoModel, AutoTokenizer, AutoConfig, AutoImageProcessor,
    AutoFeatureExtractor, AutoProcessor, AutoModelForCausalLM,
    AutoModelForSeq2SeqLM
)
from safetensors import safe_open
from safetensors.torch import load_file as load_safetensors
import numpy as np
from PIL import Image

logger = logging.getLogger(__name__)

# Custom model configurations for special architectures
CUSTOM_MODEL_CONFIGS = {
    'ti2v': {
        'model_type': 'ti2v',
        'architecture': 'TI2VModel',
        'modalities': ['text', 'vision'],
        'supports_generation': True,
        'is_multimodal': True
    },
    'diffusion': {
        'model_type': 'diffusion',
        'architecture': 'DiffusionModel',
        'modalities': ['vision', 'text'],
        'supports_generation': True,
        'is_multimodal': True
    }
}

class ModelLoader:
    """
    Comprehensive model loader supporting multiple formats and sources
    """
    
    def __init__(self):
        self.supported_formats = {
            '.pt': 'pytorch',
            '.pth': 'pytorch', 
            '.bin': 'pytorch',
            '.safetensors': 'safetensors',
            '.onnx': 'onnx',
            '.h5': 'keras',
            '.pkl': 'pickle',
            '.joblib': 'joblib'
        }
        
        self.modality_keywords = {
            'text': ['bert', 'gpt', 'roberta', 'electra', 'deberta', 'xlm', 'xlnet', 't5', 'bart'],
            'vision': ['vit', 'resnet', 'efficientnet', 'convnext', 'swin', 'deit', 'beit'],
            'multimodal': ['clip', 'blip', 'albef', 'flava', 'layoutlm', 'donut'],
            'audio': ['wav2vec', 'hubert', 'whisper', 'speech_t5']
        }
    
    async def load_model(self, source: str, **kwargs) -> Dict[str, Any]:
        """
        Load a model from various sources
        
        Args:
            source: Model source (file path, HF repo, URL)
            **kwargs: Additional loading parameters
            
        Returns:
            Dictionary containing model, tokenizer/processor, and metadata
        """
        try:
            logger.info(f"Loading model from: {source}")
            
            # Determine source type
            if self._is_url(source):
                return await self._load_from_url(source, **kwargs)
            elif self._is_huggingface_repo(source):
                return await self._load_from_huggingface(source, **kwargs)
            elif Path(source).exists():
                return await self._load_from_file(source, **kwargs)
            else:
                raise ValueError(f"Invalid model source: {source}")
                
        except Exception as e:
            logger.error(f"Error loading model from {source}: {str(e)}")
            raise
    
    async def get_model_info(self, source: str) -> Dict[str, Any]:
        """
        Get model information without loading the full model
        
        Args:
            source: Model source
            
        Returns:
            Model metadata and information
        """
        try:
            info = {
                'source': source,
                'format': 'unknown',
                'modality': 'unknown',
                'architecture': None,
                'parameters': None,
                'size_mb': None
            }
            
            if Path(source).exists():
                file_path = Path(source)
                info['size_mb'] = file_path.stat().st_size / (1024 * 1024)
                info['format'] = self.supported_formats.get(file_path.suffix, 'unknown')
                
                # Try to extract more info based on format
                if info['format'] == 'safetensors':
                    info.update(await self._get_safetensors_info(source))
                elif info['format'] == 'pytorch':
                    info.update(await self._get_pytorch_info(source))
                    
            elif self._is_huggingface_repo(source):
                info.update(await self._get_huggingface_info(source))
            
            # Detect modality from model name/architecture
            info['modality'] = self._detect_modality(source, info.get('architecture', ''))
            
            return info
            
        except Exception as e:
            logger.warning(f"Error getting model info for {source}: {str(e)}")
            return {'source': source, 'error': str(e)}
    
    def _is_url(self, source: str) -> bool:
        """Check if source is a URL"""
        try:
            result = urlparse(source)
            return all([result.scheme, result.netloc])
        except:
            return False
    
    def _is_huggingface_repo(self, source: str) -> bool:
        """Check if source is a Hugging Face repository"""
        # Simple heuristic: contains '/' but not a file extension
        return '/' in source and not any(source.endswith(ext) for ext in self.supported_formats.keys())
    
    def _detect_modality(self, source: str, architecture: str) -> str:
        """Detect model modality from source and architecture"""
        text = (source + ' ' + architecture).lower()
        
        for modality, keywords in self.modality_keywords.items():
            if any(keyword in text for keyword in keywords):
                return modality
        
        return 'unknown'
    
    async def _load_from_file(self, file_path: str, **kwargs) -> Dict[str, Any]:
        """Load model from local file"""
        file_path = Path(file_path)
        format_type = self.supported_formats.get(file_path.suffix, 'unknown')
        
        if format_type == 'safetensors':
            return await self._load_safetensors(file_path, **kwargs)
        elif format_type == 'pytorch':
            return await self._load_pytorch(file_path, **kwargs)
        else:
            raise ValueError(f"Unsupported format: {format_type}")
    
    async def _load_from_url(self, url: str, **kwargs) -> Dict[str, Any]:
        """Load model from URL"""
        # Download to temporary file
        with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
            response = requests.get(url, stream=True)
            response.raise_for_status()
            
            for chunk in response.iter_content(chunk_size=8192):
                tmp_file.write(chunk)
            
            tmp_path = tmp_file.name
        
        try:
            # Load from temporary file
            result = await self._load_from_file(tmp_path, **kwargs)
            result['source_url'] = url
            return result
        finally:
            # Cleanup temporary file
            os.unlink(tmp_path)
    
    async def _load_from_huggingface(self, repo_id: str, **kwargs) -> Dict[str, Any]:
        """Load model from Hugging Face repository"""
        try:
            # Get HF token from multiple sources
            hf_token = (
                kwargs.get('token') or
                os.getenv('HF_TOKEN') or
                os.getenv('HUGGINGFACE_TOKEN') or
                os.getenv('HUGGINGFACE_HUB_TOKEN')
            )

            logger.info(f"Loading model {repo_id} with token: {'Yes' if hf_token else 'No'}")

            # Load configuration first with timeout
            trust_remote_code = kwargs.get('trust_remote_code', False)
            logger.info(f"Loading config for {repo_id} with trust_remote_code={trust_remote_code}")

            try:
                config = AutoConfig.from_pretrained(
                    repo_id,
                    trust_remote_code=trust_remote_code,
                    token=hf_token,
                    timeout=30  # 30 second timeout
                )
                logger.info(f"Successfully loaded config for {repo_id}")
            except Exception as e:
                logger.error(f"Failed to load config for {repo_id}: {e}")
                raise ValueError(f"Could not load model configuration: {str(e)}")

            # Load model with proper device handling
            device = 'cuda' if torch.cuda.is_available() else 'cpu'

            # Check if this is a large model and warn
            model_size_gb = self._estimate_model_size(config)
            if model_size_gb > 10:
                logger.warning(f"Large model detected ({model_size_gb:.1f}GB estimated). This may take several minutes to load.")

            # Check for custom architectures that need special handling
            model_type = getattr(config, 'model_type', None)

            # Try different loading strategies for different model types
            model = None
            loading_error = None

            # Special handling for ti2v and other custom architectures
            if model_type in CUSTOM_MODEL_CONFIGS:
                try:
                    logger.info(f"Loading custom architecture {model_type} for {repo_id}...")
                    model = await self._load_custom_architecture(repo_id, config, hf_token, trust_remote_code, **kwargs)
                except Exception as e:
                    logger.warning(f"Custom architecture loading failed: {e}")
                    loading_error = str(e)

            # Strategy 1: Try AutoModel (most common) if not already loaded
            if model is None:
                try:
                    logger.info(f"Attempting to load {repo_id} with AutoModel...")
                    model = AutoModel.from_pretrained(
                        repo_id,
                        config=config,
                        torch_dtype=kwargs.get('torch_dtype', torch.float32),
                        trust_remote_code=trust_remote_code,
                        token=hf_token,
                        low_cpu_mem_usage=True,
                        timeout=120  # 2 minute timeout for model loading
                    )
                    logger.info(f"Successfully loaded {repo_id} with AutoModel")
                except Exception as e:
                    loading_error = str(e)
                    logger.warning(f"AutoModel failed for {repo_id}: {e}")

            # Strategy 2: Try specific model classes for known types
            if model is None:
                model = await self._try_specific_model_classes(repo_id, config, hf_token, trust_remote_code, kwargs)

            # Strategy 3: Try with trust_remote_code if not already enabled
            if model is None and not trust_remote_code:
                try:
                    logger.info(f"Trying {repo_id} with trust_remote_code=True")

                    # For Gemma 3 models, try AutoModelForCausalLM specifically
                    if 'gemma-3' in repo_id.lower() or 'gemma3' in str(config).lower():
                        from transformers import AutoModelForCausalLM
                        model = AutoModelForCausalLM.from_pretrained(
                            repo_id,
                            config=config,
                            torch_dtype=kwargs.get('torch_dtype', torch.float32),
                            trust_remote_code=True,
                            token=hf_token,
                            low_cpu_mem_usage=True
                        )
                    else:
                        model = AutoModel.from_pretrained(
                            repo_id,
                            config=config,
                            torch_dtype=kwargs.get('torch_dtype', torch.float32),
                            trust_remote_code=True,
                            token=hf_token,
                            low_cpu_mem_usage=True
                        )
                    logger.info(f"Successfully loaded {repo_id} with trust_remote_code=True")
                except Exception as e:
                    logger.warning(f"Loading with trust_remote_code=True failed: {e}")

            if model is None:
                raise ValueError(f"Could not load model {repo_id}. Last error: {loading_error}")

            # Move to device manually
            model = model.to(device)
            
            # Load appropriate processor/tokenizer
            processor = None
            try:
                # Try different processor types
                for processor_class in [AutoTokenizer, AutoImageProcessor, AutoFeatureExtractor, AutoProcessor]:
                    try:
                        processor = processor_class.from_pretrained(repo_id, token=hf_token)
                        break
                    except:
                        continue
            except Exception as e:
                logger.warning(f"Could not load processor for {repo_id}: {e}")
            
            return {
                'model': model,
                'processor': processor,
                'config': config,
                'source': repo_id,
                'format': 'huggingface',
                'architecture': config.architectures[0] if hasattr(config, 'architectures') and config.architectures else None,
                'modality': self._detect_modality(repo_id, str(config.architectures) if hasattr(config, 'architectures') else ''),
                'parameters': sum(p.numel() for p in model.parameters()) if hasattr(model, 'parameters') else None
            }
            
        except Exception as e:
            logger.error(f"Error loading from Hugging Face repo {repo_id}: {str(e)}")
            raise

    async def _load_custom_architecture(self, repo_id: str, config, hf_token: str, trust_remote_code: bool, **kwargs):
        """Load models with custom architectures like ti2v"""
        try:
            model_type = getattr(config, 'model_type', None)
            logger.info(f"Loading custom architecture: {model_type}")

            if model_type == 'ti2v':
                # For ti2v models, we need to create a wrapper that can work with our distillation
                return await self._load_ti2v_model(repo_id, config, hf_token, trust_remote_code, **kwargs)
            else:
                # For other custom architectures, try with trust_remote_code
                logger.info(f"Attempting to load custom model {repo_id} with trust_remote_code=True")

                # Try different model classes
                model_classes = [AutoModel, AutoModelForCausalLM, AutoModelForSeq2SeqLM]

                for model_class in model_classes:
                    try:
                        model = model_class.from_pretrained(
                            repo_id,
                            config=config,
                            trust_remote_code=True,  # Force trust_remote_code for custom architectures
                            token=hf_token,
                            low_cpu_mem_usage=True,
                            torch_dtype=torch.float32
                        )
                        logger.info(f"Successfully loaded {repo_id} with {model_class.__name__}")
                        return model
                    except Exception as e:
                        logger.warning(f"{model_class.__name__} failed for {repo_id}: {e}")
                        continue

                raise ValueError(f"All loading strategies failed for custom architecture {model_type}")

        except Exception as e:
            logger.error(f"Error loading custom architecture: {e}")
            raise

    async def _load_ti2v_model(self, repo_id: str, config, hf_token: str, trust_remote_code: bool, **kwargs):
        """Special handling for ti2v (Text-to-Image/Video) models"""
        try:
            logger.info(f"Loading ti2v model: {repo_id}")

            # For ti2v models, we'll create a wrapper that extracts text features
            # This allows us to use them in knowledge distillation

            # Try to load with trust_remote_code=True (required for custom architectures)
            model = AutoModel.from_pretrained(
                repo_id,
                config=config,
                trust_remote_code=True,
                token=hf_token,
                low_cpu_mem_usage=True,
                torch_dtype=torch.float32
            )

            # Create a wrapper that can extract features for distillation
            class TI2VWrapper(torch.nn.Module):
                def __init__(self, base_model):
                    super().__init__()
                    self.base_model = base_model
                    self.config = base_model.config

                def forward(self, input_ids=None, attention_mask=None, **kwargs):
                    # Extract text encoder features if available
                    if hasattr(self.base_model, 'text_encoder'):
                        return self.base_model.text_encoder(input_ids=input_ids, attention_mask=attention_mask)
                    elif hasattr(self.base_model, 'encoder'):
                        return self.base_model.encoder(input_ids=input_ids, attention_mask=attention_mask)
                    else:
                        # Fallback: try to get some meaningful representation
                        return self.base_model(input_ids=input_ids, attention_mask=attention_mask, **kwargs)

            wrapped_model = TI2VWrapper(model)
            logger.info(f"Successfully wrapped ti2v model: {repo_id}")
            return wrapped_model

        except Exception as e:
            logger.error(f"Error loading ti2v model {repo_id}: {e}")
            raise

    async def _load_safetensors(self, file_path: Path, **kwargs) -> Dict[str, Any]:
        """Load model from Safetensors format"""
        try:
            # Load tensors
            tensors = {}
            with safe_open(file_path, framework="pt", device="cpu") as f:
                for key in f.keys():
                    tensors[key] = f.get_tensor(key)
            
            # Try to reconstruct model architecture
            model = self._reconstruct_model_from_tensors(tensors)
            
            return {
                'model': model,
                'tensors': tensors,
                'source': str(file_path),
                'format': 'safetensors',
                'parameters': sum(tensor.numel() for tensor in tensors.values()),
                'tensor_keys': list(tensors.keys())
            }
            
        except Exception as e:
            logger.error(f"Error loading Safetensors file {file_path}: {str(e)}")
            raise
    
    async def _load_pytorch(self, file_path: Path, **kwargs) -> Dict[str, Any]:
        """Load PyTorch model"""
        try:
            # Load checkpoint
            checkpoint = torch.load(file_path, map_location='cpu')
            
            # Extract model and metadata
            if isinstance(checkpoint, dict):
                model = checkpoint.get('model', checkpoint.get('state_dict', checkpoint))
                metadata = {k: v for k, v in checkpoint.items() if k not in ['model', 'state_dict']}
            else:
                model = checkpoint
                metadata = {}
            
            return {
                'model': model,
                'metadata': metadata,
                'source': str(file_path),
                'format': 'pytorch',
                'parameters': sum(tensor.numel() for tensor in model.values()) if isinstance(model, dict) else None
            }
            
        except Exception as e:
            logger.error(f"Error loading PyTorch file {file_path}: {str(e)}")
            raise
    
    def _reconstruct_model_from_tensors(self, tensors: Dict[str, torch.Tensor]) -> nn.Module:
        """
        Attempt to reconstruct a PyTorch model from tensor dictionary
        This is a simplified implementation - in practice, this would need
        more sophisticated architecture detection
        """
        class GenericModel(nn.Module):
            def __init__(self, tensors):
                super().__init__()
                self.tensors = nn.ParameterDict()
                for name, tensor in tensors.items():
                    self.tensors[name.replace('.', '_')] = nn.Parameter(tensor)
            
            def forward(self, x):
                # Placeholder forward pass
                return x
        
        return GenericModel(tensors)
    
    async def _get_safetensors_info(self, file_path: str) -> Dict[str, Any]:
        """Get information from Safetensors file"""
        try:
            info = {}
            with safe_open(file_path, framework="pt", device="cpu") as f:
                keys = list(f.keys())
                info['tensor_count'] = len(keys)
                info['tensor_keys'] = keys[:10]  # First 10 keys
                
                # Estimate parameters
                total_params = 0
                for key in keys:
                    tensor = f.get_tensor(key)
                    total_params += tensor.numel()
                info['parameters'] = total_params
                
            return info
        except Exception as e:
            logger.warning(f"Error getting Safetensors info: {e}")
            return {}
    
    async def _get_pytorch_info(self, file_path: str) -> Dict[str, Any]:
        """Get information from PyTorch file"""
        try:
            checkpoint = torch.load(file_path, map_location='cpu')
            info = {}
            
            if isinstance(checkpoint, dict):
                info['keys'] = list(checkpoint.keys())
                
                # Look for model/state_dict
                model_data = checkpoint.get('model', checkpoint.get('state_dict', checkpoint))
                if isinstance(model_data, dict):
                    info['parameters'] = sum(tensor.numel() for tensor in model_data.values())
                    info['layer_count'] = len(model_data)
                    
            return info
        except Exception as e:
            logger.warning(f"Error getting PyTorch info: {e}")
            return {}
    
    async def _get_huggingface_info(self, repo_id: str) -> Dict[str, Any]:
        """Get information from Hugging Face repository"""
        try:
            hf_token = (
                os.getenv('HF_TOKEN') or
                os.getenv('HUGGINGFACE_TOKEN') or
                os.getenv('HUGGINGFACE_HUB_TOKEN')
            )
            config = AutoConfig.from_pretrained(repo_id, token=hf_token)
            info = {
                'architecture': config.architectures[0] if hasattr(config, 'architectures') and config.architectures else None,
                'model_type': getattr(config, 'model_type', None),
                'hidden_size': getattr(config, 'hidden_size', None),
                'num_layers': getattr(config, 'num_hidden_layers', getattr(config, 'num_layers', None)),
                'vocab_size': getattr(config, 'vocab_size', None)
            }
            return info
        except Exception as e:
            logger.warning(f"Error getting Hugging Face info: {e}")
            return {}

    async def _try_specific_model_classes(self, repo_id: str, config, hf_token: str, trust_remote_code: bool, kwargs: Dict[str, Any]):
        """Try loading with specific model classes for known architectures"""
        from transformers import (
            AutoModelForCausalLM, AutoModelForSequenceClassification,
            AutoModelForTokenClassification, AutoModelForQuestionAnswering,
            AutoModelForMaskedLM, AutoModelForImageClassification,
            AutoModelForObjectDetection, AutoModelForSemanticSegmentation,
            AutoModelForImageSegmentation, AutoModelForDepthEstimation,
            AutoModelForZeroShotImageClassification
        )

        # Map model types to appropriate AutoModel classes
        model_type = getattr(config, 'model_type', '').lower()
        architecture = getattr(config, 'architectures', [])
        arch_str = str(architecture).lower() if architecture else ''

        model_classes_to_try = []

        # Determine appropriate model classes based on model type and architecture
        if 'siglip' in model_type or 'siglip' in arch_str:
            # SigLIP models - try vision-related classes
            model_classes_to_try = [
                AutoModelForImageClassification,
                AutoModelForZeroShotImageClassification,
                AutoModel
            ]
        elif 'clip' in model_type or 'clip' in arch_str:
            model_classes_to_try = [AutoModelForZeroShotImageClassification, AutoModel]
        elif 'vit' in model_type or 'vision' in model_type:
            model_classes_to_try = [AutoModelForImageClassification, AutoModel]
        elif 'bert' in model_type or 'roberta' in model_type:
            model_classes_to_try = [AutoModelForMaskedLM, AutoModelForSequenceClassification, AutoModel]
        elif 'gemma' in model_type or 'gemma' in arch_str:
            # Gemma models (including Gemma 3) - try causal LM classes
            model_classes_to_try = [AutoModelForCausalLM, AutoModel]
        elif 'gpt' in model_type or 'llama' in model_type:
            model_classes_to_try = [AutoModelForCausalLM, AutoModel]
        else:
            # Generic fallback
            model_classes_to_try = [
                AutoModelForCausalLM,  # Try causal LM first for newer models
                AutoModelForSequenceClassification,
                AutoModelForImageClassification,
                AutoModel
            ]

        # Try each model class
        for model_class in model_classes_to_try:
            try:
                logger.info(f"Trying {repo_id} with {model_class.__name__}")
                model = model_class.from_pretrained(
                    repo_id,
                    config=config,
                    torch_dtype=kwargs.get('torch_dtype', torch.float32),
                    trust_remote_code=trust_remote_code,
                    token=hf_token,
                    low_cpu_mem_usage=True
                )
                logger.info(f"Successfully loaded {repo_id} with {model_class.__name__}")
                return model
            except Exception as e:
                logger.debug(f"{model_class.__name__} failed for {repo_id}: {e}")
                continue

        return None

    async def load_trained_student(self, model_path: str) -> Dict[str, Any]:
        """Load a previously trained student model for retraining"""
        try:
            # Check if it's a Hugging Face model (starts with organization/)
            if '/' in model_path and not Path(model_path).exists():
                # This is likely a Hugging Face repository
                return await self._load_student_from_huggingface(model_path)

            # Local model path
            model_dir = Path(model_path)

            # Check if it's a trained student model
            config_path = model_dir / "config.json"
            if not config_path.exists():
                # Try alternative naming
                safetensors_files = list(model_dir.glob("*.safetensors"))
                if safetensors_files:
                    config_path = safetensors_files[0].with_suffix('_config.json')

            if not config_path.exists():
                raise ValueError("No configuration file found for student model")

            # Load configuration
            with open(config_path, 'r') as f:
                config = json.load(f)

            # Verify it's a student model
            if not config.get('is_student_model', False):
                raise ValueError("This is not a trained student model")

            # Load training history
            history_path = model_dir / "training_history.json"
            if not history_path.exists():
                # Try alternative naming
                safetensors_files = list(model_dir.glob("*.safetensors"))
                if safetensors_files:
                    history_path = safetensors_files[0].with_suffix('_training_history.json')

            training_history = {}
            if history_path.exists():
                with open(history_path, 'r') as f:
                    training_history = json.load(f)

            # Load model weights
            model_file = None
            for ext in ['.safetensors', '.bin', '.pt']:
                potential_file = model_dir / f"student_model{ext}"
                if potential_file.exists():
                    model_file = potential_file
                    break

            if not model_file:
                # Look for any model file
                for ext in ['.safetensors', '.bin', '.pt']:
                    files = list(model_dir.glob(f"*{ext}"))
                    if files:
                        model_file = files[0]
                        break

            if not model_file:
                raise ValueError("No model file found")

            return {
                'type': 'trained_student',
                'path': str(model_path),
                'config': config,
                'training_history': training_history,
                'model_file': str(model_file),
                'can_be_retrained': config.get('can_be_retrained', True),
                'original_teachers': training_history.get('retraining_info', {}).get('original_teachers', []),
                'recommended_lr': training_history.get('retraining_info', {}).get('recommended_learning_rate', 1e-5),
                'modalities': config.get('modalities', ['text']),
                'architecture': config.get('architecture', 'unknown')
            }

        except Exception as e:
            logger.error(f"Error loading trained student model: {e}")
            raise

    async def _load_student_from_huggingface(self, repo_id: str) -> Dict[str, Any]:
        """Load a student model from Hugging Face repository"""
        try:
            # Get HF token
            hf_token = (
                os.getenv('HF_TOKEN') or
                os.getenv('HUGGINGFACE_TOKEN') or
                os.getenv('HUGGINGFACE_HUB_TOKEN')
            )

            logger.info(f"Loading student model from Hugging Face: {repo_id}")

            # Load configuration
            config = AutoConfig.from_pretrained(repo_id, token=hf_token)

            # Try to load the model to verify it exists and is accessible
            model = await self._load_from_huggingface(repo_id, token=hf_token)

            # Check if it's marked as a student model (optional)
            is_student = config.get('is_student_model', False)

            return {
                'type': 'huggingface_student',
                'path': repo_id,
                'config': config.__dict__ if hasattr(config, '__dict__') else {},
                'training_history': {},  # HF models may not have our training history
                'model_file': repo_id,  # For HF models, this is the repo ID
                'can_be_retrained': True,
                'original_teachers': [],  # Unknown for external models
                'recommended_lr': 1e-5,  # Default learning rate
                'modalities': ['text'],  # Default, could be enhanced
                'architecture': getattr(config, 'architectures', ['unknown'])[0] if hasattr(config, 'architectures') else 'unknown',
                'is_huggingface': True
            }

        except Exception as e:
            logger.error(f"Error loading student model from Hugging Face: {e}")
            raise ValueError(f"Could not load student model from Hugging Face: {str(e)}")

    async def load_trained_student_from_space(self, space_name: str) -> Dict[str, Any]:
        """Load a student model from a Hugging Face Space"""
        try:
            # Get HF token
            hf_token = (
                os.getenv('HF_TOKEN') or
                os.getenv('HUGGINGFACE_TOKEN') or
                os.getenv('HUGGINGFACE_HUB_TOKEN')
            )

            logger.info(f"Loading student model from Hugging Face Space: {space_name}")

            from huggingface_hub import HfApi
            api = HfApi(token=hf_token)

            # List files in the Space to find model files
            try:
                files = api.list_repo_files(space_name, repo_type="space")

                # Look for model files in models directory
                model_files = [f for f in files if f.startswith('models/') and f.endswith(('.safetensors', '.bin', '.pt'))]

                if not model_files:
                    # Look for model files in root
                    model_files = [f for f in files if f.endswith(('.safetensors', '.bin', '.pt'))]

                if not model_files:
                    raise ValueError(f"No model files found in Space {space_name}")

                # Use the first model file found
                model_file = model_files[0]
                logger.info(f"Found model file in Space: {model_file}")

                # For now, we'll treat Space models as external HF models
                # In the future, we could download and cache them locally
                return {
                    'type': 'space_student',
                    'path': space_name,
                    'config': {},  # Space models may not have our config format
                    'training_history': {},  # Unknown for space models
                    'model_file': model_file,
                    'can_be_retrained': True,
                    'original_teachers': [],  # Unknown for external models
                    'recommended_lr': 1e-5,  # Default learning rate
                    'modalities': ['text'],  # Default, could be enhanced
                    'architecture': 'unknown',
                    'is_space': True,
                    'space_name': space_name,
                    'available_models': model_files
                }

            except Exception as e:
                logger.error(f"Error accessing Space files: {e}")
                # Fallback: treat as a regular HF model
                return await self._load_student_from_huggingface(space_name)

        except Exception as e:
            logger.error(f"Error loading student model from Space: {e}")
            raise ValueError(f"Could not load student model from Space: {str(e)}")

    def _estimate_model_size(self, config) -> float:
        """Estimate model size in GB based on configuration"""
        try:
            # Get basic parameters
            hidden_size = getattr(config, 'hidden_size', 768)
            num_layers = getattr(config, 'num_hidden_layers', getattr(config, 'num_layers', 12))
            vocab_size = getattr(config, 'vocab_size', 50000)

            # Rough estimation: parameters * 4 bytes (float32) / 1GB
            # This is a very rough estimate
            embedding_params = vocab_size * hidden_size
            layer_params = num_layers * (hidden_size * hidden_size * 4)  # Simplified
            total_params = embedding_params + layer_params

            # Convert to GB (4 bytes per parameter for float32)
            size_gb = (total_params * 4) / (1024 ** 3)

            return max(size_gb, 0.1)  # Minimum 0.1GB
        except Exception:
            return 1.0  # Default 1GB if estimation fails
    
    def validate_model_compatibility(self, models: List[Dict[str, Any]]) -> Dict[str, Any]:
        """
        Validate that multiple models are compatible for knowledge distillation
        
        Args:
            models: List of loaded model dictionaries
            
        Returns:
            Validation result with compatibility information
        """
        if not models:
            return {'compatible': False, 'reason': 'No models provided'}
        
        if len(models) < 2:
            return {'compatible': False, 'reason': 'At least 2 models required for distillation'}
        
        # Check modality compatibility
        modalities = [model.get('modality', 'unknown') for model in models]
        unique_modalities = set(modalities)
        
        # Allow same modality or multimodal combinations
        if len(unique_modalities) == 1 and 'unknown' not in unique_modalities:
            compatibility_type = 'same_modality'
        elif 'multimodal' in unique_modalities or len(unique_modalities) > 1:
            compatibility_type = 'cross_modal'
        else:
            return {'compatible': False, 'reason': 'Unknown modalities detected'}
        
        return {
            'compatible': True,
            'type': compatibility_type,
            'modalities': list(unique_modalities),
            'model_count': len(models),
            'total_parameters': sum(model.get('parameters', 0) for model in models if model.get('parameters'))
        }