Spaces:
Running
Running
File size: 16,936 Bytes
cca1fa9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
"""
Models Management System for Knowledge Distillation Platform
نظام إدارة النماذج لمنصة تقطير المعرفة
"""
import json
import logging
import os
from pathlib import Path
from typing import Dict, List, Any, Optional
from datetime import datetime
import asyncio
from huggingface_hub import list_models, model_info
logger = logging.getLogger(__name__)
class ModelsManager:
"""
Comprehensive models management system for the platform
نظام إدارة النماذج الشامل للمنصة
"""
def __init__(self, storage_path: str = "data/models"):
self.storage_path = Path(storage_path)
self.storage_path.mkdir(parents=True, exist_ok=True)
self.config_file = self.storage_path / "models_config.json"
self.selected_teachers_file = self.storage_path / "selected_teachers.json"
self.selected_student_file = self.storage_path / "selected_student.json"
# Load existing configuration
self.models_config = self._load_config()
self.selected_teachers = self._load_selected_teachers()
self.selected_student = self._load_selected_student()
logger.info(f"Models Manager initialized with {len(self.models_config)} configured models")
def _load_config(self) -> Dict[str, Any]:
"""Load models configuration"""
try:
if self.config_file.exists():
with open(self.config_file, 'r', encoding='utf-8') as f:
return json.load(f)
else:
# Initialize with default models
default_config = self._get_default_models()
self._save_config(default_config)
return default_config
except Exception as e:
logger.error(f"Error loading models config: {e}")
return {}
def _save_config(self, config: Dict[str, Any]):
"""Save models configuration"""
try:
with open(self.config_file, 'w', encoding='utf-8') as f:
json.dump(config, f, indent=2, ensure_ascii=False)
except Exception as e:
logger.error(f"Error saving models config: {e}")
def _load_selected_teachers(self) -> List[str]:
"""Load selected teacher models list"""
try:
if self.selected_teachers_file.exists():
with open(self.selected_teachers_file, 'r', encoding='utf-8') as f:
return json.load(f)
else:
return []
except Exception as e:
logger.error(f"Error loading selected teachers: {e}")
return []
def _save_selected_teachers(self):
"""Save selected teacher models list"""
try:
with open(self.selected_teachers_file, 'w', encoding='utf-8') as f:
json.dump(self.selected_teachers, f, indent=2, ensure_ascii=False)
except Exception as e:
logger.error(f"Error saving selected teachers: {e}")
def _load_selected_student(self) -> Optional[str]:
"""Load selected student model"""
try:
if self.selected_student_file.exists():
with open(self.selected_student_file, 'r', encoding='utf-8') as f:
data = json.load(f)
return data.get('student_model')
else:
return None
except Exception as e:
logger.error(f"Error loading selected student: {e}")
return None
def _save_selected_student(self):
"""Save selected student model"""
try:
with open(self.selected_student_file, 'w', encoding='utf-8') as f:
json.dump({'student_model': self.selected_student}, f, indent=2, ensure_ascii=False)
except Exception as e:
logger.error(f"Error saving selected student: {e}")
def _get_default_models(self) -> Dict[str, Any]:
"""Get default models configuration"""
return {
"google/bert-base-uncased": {
"name": "BERT Base Uncased",
"name_ar": "بيرت الأساسي",
"model_id": "google/bert-base-uncased",
"category": "text",
"type": "teacher",
"description": "BERT base model for text understanding",
"description_ar": "نموذج بيرت الأساسي لفهم النصوص",
"size": "~440MB",
"language": "English",
"modality": "text",
"architecture": "transformer",
"license": "Apache 2.0",
"added_date": datetime.now().isoformat(),
"status": "available",
"parameters": "110M"
},
"microsoft/DialoGPT-medium": {
"name": "DialoGPT Medium",
"name_ar": "ديالو جي بي تي متوسط",
"model_id": "microsoft/DialoGPT-medium",
"category": "text",
"type": "teacher",
"description": "Conversational AI model",
"description_ar": "نموذج ذكاء اصطناعي للمحادثة",
"size": "~1.2GB",
"language": "English",
"modality": "text",
"architecture": "gpt",
"license": "MIT",
"added_date": datetime.now().isoformat(),
"status": "available",
"parameters": "345M"
},
"google/vit-base-patch16-224": {
"name": "Vision Transformer Base",
"name_ar": "محول الرؤية الأساسي",
"model_id": "google/vit-base-patch16-224",
"category": "vision",
"type": "teacher",
"description": "Vision Transformer for image classification",
"description_ar": "محول الرؤية لتصنيف الصور",
"size": "~330MB",
"language": "Universal",
"modality": "vision",
"architecture": "transformer",
"license": "Apache 2.0",
"added_date": datetime.now().isoformat(),
"status": "available",
"parameters": "86M"
}
}
async def search_huggingface_models(self, query: str, limit: int = 20, model_type: str = None) -> List[Dict[str, Any]]:
"""Search for models on Hugging Face"""
try:
logger.info(f"Searching Hugging Face for models: {query}")
# Search models
models = list_models(search=query, limit=limit)
results = []
for model in models:
try:
# Get model info
info = model_info(model.modelId)
model_data = {
"id": model.modelId,
"name": model.modelId.split('/')[-1],
"author": model.modelId.split('/')[0] if '/' in model.modelId else 'unknown',
"description": getattr(info, 'description', 'No description available'),
"tags": getattr(info, 'tags', []),
"downloads": getattr(info, 'downloads', 0),
"likes": getattr(info, 'likes', 0),
"created_at": getattr(info, 'created_at', None),
"last_modified": getattr(info, 'last_modified', None),
"pipeline_tag": getattr(info, 'pipeline_tag', 'unknown'),
"library_name": getattr(info, 'library_name', 'unknown')
}
# Filter by model type if specified
if model_type:
pipeline_tag = model_data.get('pipeline_tag', '').lower()
if model_type == 'text' and pipeline_tag not in ['text-classification', 'text-generation', 'fill-mask', 'question-answering']:
continue
elif model_type == 'vision' and pipeline_tag not in ['image-classification', 'object-detection', 'image-segmentation']:
continue
elif model_type == 'audio' and pipeline_tag not in ['automatic-speech-recognition', 'audio-classification']:
continue
results.append(model_data)
except Exception as e:
logger.warning(f"Error processing model {model.modelId}: {e}")
continue
logger.info(f"Found {len(results)} models")
return results
except Exception as e:
logger.error(f"Error searching Hugging Face models: {e}")
return []
async def add_model(self, model_info: Dict[str, Any]) -> bool:
"""Add a new model to the configuration"""
try:
model_id = model_info.get('model_id') or model_info.get('id')
if not model_id:
raise ValueError("Model ID is required")
# Validate model exists and is accessible
validation_result = await self.validate_model(model_id)
if not validation_result['valid']:
raise ValueError(f"Model validation failed: {validation_result['error']}")
# Prepare model configuration
config = {
"name": model_info.get('name', model_id.split('/')[-1]),
"name_ar": model_info.get('name_ar', ''),
"model_id": model_id,
"category": model_info.get('category', 'text'),
"type": model_info.get('type', 'teacher'),
"description": model_info.get('description', ''),
"description_ar": model_info.get('description_ar', ''),
"size": model_info.get('size', 'Unknown'),
"language": model_info.get('language', 'Unknown'),
"modality": model_info.get('modality', 'text'),
"architecture": model_info.get('architecture', 'unknown'),
"license": model_info.get('license', 'Unknown'),
"added_date": datetime.now().isoformat(),
"status": "available",
"parameters": model_info.get('parameters', 'Unknown'),
"validation": validation_result
}
# Add to configuration
self.models_config[model_id] = config
self._save_config(self.models_config)
logger.info(f"Added model: {model_id}")
return True
except Exception as e:
logger.error(f"Error adding model: {e}")
return False
async def validate_model(self, model_id: str) -> Dict[str, Any]:
"""Validate that a model exists and is accessible"""
try:
logger.info(f"Validating model: {model_id}")
# Try to get model info
info = model_info(model_id)
return {
"valid": True,
"pipeline_tag": getattr(info, 'pipeline_tag', 'unknown'),
"library_name": getattr(info, 'library_name', 'unknown'),
"accessible": True,
"error": None
}
except Exception as e:
logger.warning(f"Model validation failed for {model_id}: {e}")
return {
"valid": False,
"pipeline_tag": None,
"library_name": None,
"accessible": False,
"error": str(e)
}
def get_all_models(self) -> Dict[str, Any]:
"""Get all configured models"""
return self.models_config
def get_teacher_models(self) -> Dict[str, Any]:
"""Get all teacher models"""
return {
model_id: model_info
for model_id, model_info in self.models_config.items()
if model_info.get('type') == 'teacher'
}
def get_student_models(self) -> Dict[str, Any]:
"""Get all student models"""
return {
model_id: model_info
for model_id, model_info in self.models_config.items()
if model_info.get('type') == 'student'
}
def get_selected_teachers(self) -> List[str]:
"""Get list of selected teacher model IDs"""
return self.selected_teachers
def get_selected_student(self) -> Optional[str]:
"""Get selected student model ID"""
return self.selected_student
def select_teacher(self, model_id: str) -> bool:
"""Select a teacher model"""
try:
if model_id not in self.models_config:
raise ValueError(f"Model {model_id} not found in configuration")
model_info = self.models_config[model_id]
if model_info.get('type') != 'teacher':
raise ValueError(f"Model {model_id} is not a teacher model")
if model_id not in self.selected_teachers:
self.selected_teachers.append(model_id)
self._save_selected_teachers()
logger.info(f"Selected teacher model: {model_id}")
return True
except Exception as e:
logger.error(f"Error selecting teacher model: {e}")
return False
def deselect_teacher(self, model_id: str) -> bool:
"""Deselect a teacher model"""
try:
if model_id in self.selected_teachers:
self.selected_teachers.remove(model_id)
self._save_selected_teachers()
logger.info(f"Deselected teacher model: {model_id}")
return True
except Exception as e:
logger.error(f"Error deselecting teacher model: {e}")
return False
def select_student(self, model_id: str = None) -> bool:
"""Select a student model (None for training from scratch)"""
try:
if model_id and model_id not in self.models_config:
raise ValueError(f"Model {model_id} not found in configuration")
if model_id:
model_info = self.models_config[model_id]
if model_info.get('type') not in ['student', 'teacher']: # Teachers can be used as base for students
raise ValueError(f"Model {model_id} cannot be used as student model")
self.selected_student = model_id
self._save_selected_student()
if model_id:
logger.info(f"Selected student model: {model_id}")
else:
logger.info("Selected training from scratch (no base student model)")
return True
except Exception as e:
logger.error(f"Error selecting student model: {e}")
return False
def remove_model(self, model_id: str) -> bool:
"""Remove a model from configuration"""
try:
if model_id in self.models_config:
del self.models_config[model_id]
self._save_config(self.models_config)
if model_id in self.selected_teachers:
self.selected_teachers.remove(model_id)
self._save_selected_teachers()
if self.selected_student == model_id:
self.selected_student = None
self._save_selected_student()
logger.info(f"Removed model: {model_id}")
return True
except Exception as e:
logger.error(f"Error removing model: {e}")
return False
def get_model_info(self, model_id: str) -> Optional[Dict[str, Any]]:
"""Get detailed information about a specific model"""
return self.models_config.get(model_id)
def get_models_by_category(self, category: str) -> Dict[str, Any]:
"""Get models filtered by category"""
return {
model_id: model_info
for model_id, model_info in self.models_config.items()
if model_info.get('category') == category
}
def get_models_by_modality(self, modality: str) -> Dict[str, Any]:
"""Get models filtered by modality"""
return {
model_id: model_info
for model_id, model_info in self.models_config.items()
if model_info.get('modality') == modality
}
|