train-modle / src /core /memory_manager.py
fokan's picture
Initial clean commit: Multi-Modal Knowledge Distillation Platform
ab4e093
"""
Advanced Memory Manager for CPU-only training with 16GB RAM constraint
Optimized for Hugging Face Spaces free tier
"""
import os
import gc
import psutil
import logging
import threading
import time
from typing import Dict, Any, Optional, List, Callable
from pathlib import Path
import torch
import numpy as np
from contextlib import contextmanager
logger = logging.getLogger(__name__)
class AdvancedMemoryManager:
"""
Advanced memory management for CPU-only training with strict memory constraints
"""
def __init__(self, max_memory_gb: float = 14.0):
"""
Initialize memory manager
Args:
max_memory_gb: Maximum memory usage in GB (default 14GB for 16GB systems)
"""
self.max_memory_bytes = max_memory_gb * 1024**3
self.current_memory_usage = 0
self.memory_threshold_warning = 0.8 # 80% warning
self.memory_threshold_critical = 0.9 # 90% critical
self.memory_threshold_emergency = 0.95 # 95% emergency cleanup
# Memory tracking
self.allocated_objects = {}
self.memory_history = []
self.cleanup_callbacks = []
# Threading for monitoring
self.monitoring_active = False
self.monitor_thread = None
# CPU optimization
self.cpu_count = os.cpu_count()
torch.set_num_threads(min(self.cpu_count, 8)) # Limit threads for stability
logger.info(f"Memory Manager initialized with {max_memory_gb}GB limit")
logger.info(f"CPU threads set to: {torch.get_num_threads()}")
def get_memory_info(self) -> Dict[str, Any]:
"""Get current memory information"""
process = psutil.Process()
memory_info = process.memory_info()
system_memory = psutil.virtual_memory()
return {
'process_memory_mb': memory_info.rss / 1024**2,
'process_memory_percent': (memory_info.rss / system_memory.total) * 100,
'system_memory_total_gb': system_memory.total / 1024**3,
'system_memory_available_gb': system_memory.available / 1024**3,
'system_memory_percent': system_memory.percent,
'max_allowed_gb': self.max_memory_bytes / 1024**3,
'torch_allocated_mb': torch.cuda.memory_allocated() / 1024**2 if torch.cuda.is_available() else 0,
'torch_cached_mb': torch.cuda.memory_reserved() / 1024**2 if torch.cuda.is_available() else 0
}
def check_memory_status(self) -> str:
"""Check current memory status"""
memory_info = self.get_memory_info()
usage_ratio = memory_info['process_memory_mb'] * 1024**2 / self.max_memory_bytes
if usage_ratio >= self.memory_threshold_emergency:
return 'emergency'
elif usage_ratio >= self.memory_threshold_critical:
return 'critical'
elif usage_ratio >= self.memory_threshold_warning:
return 'warning'
else:
return 'normal'
def force_cleanup(self):
"""Force aggressive memory cleanup"""
logger.warning("Performing emergency memory cleanup")
# Clear Python garbage
collected = gc.collect()
logger.info(f"Garbage collection freed {collected} objects")
# Clear PyTorch cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Run cleanup callbacks
for callback in self.cleanup_callbacks:
try:
callback()
except Exception as e:
logger.error(f"Cleanup callback failed: {e}")
# Force another garbage collection
gc.collect()
memory_info = self.get_memory_info()
logger.info(f"Memory after cleanup: {memory_info['process_memory_mb']:.1f}MB")
@contextmanager
def memory_context(self, operation_name: str, expected_memory_mb: float = 0):
"""Context manager for memory-aware operations"""
start_memory = self.get_memory_info()
logger.debug(f"Starting {operation_name}, memory: {start_memory['process_memory_mb']:.1f}MB")
# Check if we have enough memory
if expected_memory_mb > 0:
available_mb = (self.max_memory_bytes / 1024**2) - start_memory['process_memory_mb']
if expected_memory_mb > available_mb * 0.8: # 80% safety margin
logger.warning(f"Operation {operation_name} may exceed memory limit")
self.force_cleanup()
try:
yield self
finally:
end_memory = self.get_memory_info()
memory_diff = end_memory['process_memory_mb'] - start_memory['process_memory_mb']
logger.debug(f"Completed {operation_name}, memory change: {memory_diff:+.1f}MB")
# Check if cleanup is needed
status = self.check_memory_status()
if status in ['critical', 'emergency']:
self.force_cleanup()
def register_cleanup_callback(self, callback: Callable):
"""Register a cleanup callback function"""
self.cleanup_callbacks.append(callback)
def start_monitoring(self, interval_seconds: float = 30.0):
"""Start memory monitoring thread"""
if self.monitoring_active:
return
self.monitoring_active = True
self.monitor_thread = threading.Thread(
target=self._monitor_memory,
args=(interval_seconds,),
daemon=True
)
self.monitor_thread.start()
logger.info("Memory monitoring started")
def stop_monitoring(self):
"""Stop memory monitoring"""
self.monitoring_active = False
if self.monitor_thread:
self.monitor_thread.join(timeout=5.0)
logger.info("Memory monitoring stopped")
def _monitor_memory(self, interval_seconds: float):
"""Internal memory monitoring loop"""
while self.monitoring_active:
try:
memory_info = self.get_memory_info()
status = self.check_memory_status()
# Log memory status
if status != 'normal':
logger.warning(f"Memory status: {status}, usage: {memory_info['process_memory_mb']:.1f}MB")
# Auto cleanup if needed
if status == 'emergency':
self.force_cleanup()
elif status == 'critical':
gc.collect()
# Store history
self.memory_history.append({
'timestamp': time.time(),
'memory_mb': memory_info['process_memory_mb'],
'status': status
})
# Keep only last 100 entries
if len(self.memory_history) > 100:
self.memory_history = self.memory_history[-100:]
time.sleep(interval_seconds)
except Exception as e:
logger.error(f"Memory monitoring error: {e}")
time.sleep(interval_seconds)
def get_memory_recommendations(self) -> List[str]:
"""Get memory optimization recommendations"""
memory_info = self.get_memory_info()
recommendations = []
if memory_info['process_memory_mb'] > 8000: # > 8GB
recommendations.append("Consider using smaller batch sizes")
recommendations.append("Enable gradient checkpointing")
recommendations.append("Use model sharding for large models")
if memory_info['system_memory_percent'] > 80:
recommendations.append("Close unnecessary applications")
recommendations.append("Consider using swap memory")
if len(self.memory_history) > 10:
recent_growth = self.memory_history[-1]['memory_mb'] - self.memory_history[-10]['memory_mb']
if recent_growth > 1000: # > 1GB growth
recommendations.append("Memory usage is growing rapidly - check for memory leaks")
return recommendations
def optimize_torch_settings(self):
"""Optimize PyTorch settings for CPU and memory efficiency"""
# Set optimal thread count
torch.set_num_threads(min(self.cpu_count, 8))
# Enable memory efficient attention if available
try:
torch.backends.cuda.enable_flash_sdp(False) # Disable for CPU
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_mem_efficient_sdp(True)
except:
pass
# Set memory allocation strategy
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128'
logger.info("PyTorch settings optimized for CPU and memory efficiency")
def __enter__(self):
self.start_monitoring()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.stop_monitoring()
self.force_cleanup()