""" Medical Data Preprocessing for AI training Optimized for medical images and text with memory constraints """ import logging import numpy as np from typing import Dict, Any, List, Optional, Tuple import torch import torch.nn.functional as F from PIL import Image, ImageEnhance, ImageFilter import cv2 import re logger = logging.getLogger(__name__) class MedicalPreprocessor: """ Medical data preprocessor with memory optimization """ def __init__(self, target_size: Tuple[int, int] = (512, 512), normalize_images: bool = True): """ Initialize medical preprocessor Args: target_size: Target size for image resizing normalize_images: Whether to normalize images """ self.target_size = target_size self.normalize_images = normalize_images # Medical text preprocessing patterns self.medical_patterns = { 'measurements': r'\d+\.?\d*\s*(mm|cm|m|ml|l|kg|g|mg)', 'dates': r'\d{1,2}[/-]\d{1,2}[/-]\d{2,4}', 'times': r'\d{1,2}:\d{2}(?::\d{2})?', 'medical_codes': r'[A-Z]\d{2}\.?\d*', 'dosages': r'\d+\.?\d*\s*(mg|g|ml|units?)', } # Common medical abbreviations self.medical_abbreviations = { 'pt': 'patient', 'pts': 'patients', 'dx': 'diagnosis', 'tx': 'treatment', 'hx': 'history', 'sx': 'symptoms', 'rx': 'prescription', 'w/': 'with', 'w/o': 'without', 'c/o': 'complains of', 'r/o': 'rule out', 's/p': 'status post', 'nkda': 'no known drug allergies', 'sob': 'shortness of breath', 'cp': 'chest pain', 'abd': 'abdomen', 'ext': 'extremities' } logger.info(f"Medical Preprocessor initialized with target size {target_size}") def preprocess_medical_image(self, image: torch.Tensor, modality: str = 'unknown', enhance_contrast: bool = True) -> torch.Tensor: """ Preprocess medical image with modality-specific optimizations Args: image: Input image tensor modality: Medical imaging modality (CT, MRI, X-ray, etc.) enhance_contrast: Whether to enhance contrast Returns: Preprocessed image tensor """ try: # Ensure image is float tensor if image.dtype != torch.float32: image = image.float() # Handle different input shapes if len(image.shape) == 2: image = image.unsqueeze(0) # Add channel dimension elif len(image.shape) == 4: image = image.squeeze(0) # Remove batch dimension if present # Resize to target size if image.shape[-2:] != self.target_size: image = F.interpolate( image.unsqueeze(0), size=self.target_size, mode='bilinear', align_corners=False ).squeeze(0) # Apply modality-specific preprocessing image = self._apply_modality_specific_processing(image, modality) # Enhance contrast if requested if enhance_contrast: image = self._enhance_medical_image_contrast(image) # Normalize if requested if self.normalize_images: image = self._normalize_medical_image(image) # Ensure proper range [0, 1] image = torch.clamp(image, 0.0, 1.0) return image except Exception as e: logger.error(f"Error preprocessing medical image: {e}") # Return dummy image on error return torch.zeros(1, *self.target_size) def _apply_modality_specific_processing(self, image: torch.Tensor, modality: str) -> torch.Tensor: """Apply modality-specific image processing""" modality_lower = modality.lower() try: if 'ct' in modality_lower: # CT scan specific processing image = self._process_ct_image(image) elif 'mri' in modality_lower: # MRI specific processing image = self._process_mri_image(image) elif 'xray' in modality_lower or 'x-ray' in modality_lower: # X-ray specific processing image = self._process_xray_image(image) elif 'ultrasound' in modality_lower: # Ultrasound specific processing image = self._process_ultrasound_image(image) return image except Exception as e: logger.warning(f"Error in modality-specific processing for {modality}: {e}") return image def _process_ct_image(self, image: torch.Tensor) -> torch.Tensor: """Process CT scan images""" # CT images often need windowing adjustments # Apply soft tissue window as default image = torch.clamp(image, 0.0, 1.0) # Enhance contrast for better tissue differentiation image = self._apply_gamma_correction(image, gamma=0.8) return image def _process_mri_image(self, image: torch.Tensor) -> torch.Tensor: """Process MRI images""" # MRI images often have good contrast already # Apply mild enhancement image = self._apply_gamma_correction(image, gamma=0.9) return image def _process_xray_image(self, image: torch.Tensor) -> torch.Tensor: """Process X-ray images""" # X-rays often need contrast enhancement image = self._enhance_medical_image_contrast(image, factor=1.2) # Apply histogram equalization equivalent image = self._apply_histogram_equalization(image) return image def _process_ultrasound_image(self, image: torch.Tensor) -> torch.Tensor: """Process ultrasound images""" # Ultrasound images often need noise reduction image = self._apply_noise_reduction(image) return image def _enhance_medical_image_contrast(self, image: torch.Tensor, factor: float = 1.1) -> torch.Tensor: """Enhance contrast of medical images""" try: # Apply contrast enhancement mean_val = torch.mean(image) enhanced = (image - mean_val) * factor + mean_val return torch.clamp(enhanced, 0.0, 1.0) except Exception as e: logger.warning(f"Error enhancing contrast: {e}") return image def _apply_gamma_correction(self, image: torch.Tensor, gamma: float = 1.0) -> torch.Tensor: """Apply gamma correction to image""" try: return torch.pow(image, gamma) except Exception as e: logger.warning(f"Error applying gamma correction: {e}") return image def _apply_histogram_equalization(self, image: torch.Tensor) -> torch.Tensor: """Apply histogram equalization equivalent""" try: # Convert to numpy for processing image_np = image.squeeze().numpy() # Apply CLAHE (Contrast Limited Adaptive Histogram Equalization) clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) # Convert to uint8 for CLAHE image_uint8 = (image_np * 255).astype(np.uint8) equalized = clahe.apply(image_uint8) # Convert back to tensor result = torch.from_numpy(equalized.astype(np.float32) / 255.0) # Restore original shape if len(image.shape) == 3: result = result.unsqueeze(0) return result except Exception as e: logger.warning(f"Error applying histogram equalization: {e}") return image def _apply_noise_reduction(self, image: torch.Tensor) -> torch.Tensor: """Apply noise reduction to image""" try: # Simple Gaussian blur for noise reduction kernel_size = 3 sigma = 0.5 # Create Gaussian kernel kernel = self._create_gaussian_kernel(kernel_size, sigma) kernel = kernel.unsqueeze(0).unsqueeze(0) # Add batch and channel dims # Apply convolution if len(image.shape) == 3: image_input = image.unsqueeze(0) # Add batch dimension else: image_input = image filtered = F.conv2d(image_input, kernel, padding=kernel_size//2) # Remove batch dimension if added if len(image.shape) == 3: filtered = filtered.squeeze(0) return filtered except Exception as e: logger.warning(f"Error applying noise reduction: {e}") return image def _create_gaussian_kernel(self, kernel_size: int, sigma: float) -> torch.Tensor: """Create Gaussian kernel for filtering""" coords = torch.arange(kernel_size, dtype=torch.float32) coords -= kernel_size // 2 g = torch.exp(-(coords ** 2) / (2 * sigma ** 2)) g /= g.sum() # Create 2D kernel kernel = g[:, None] * g[None, :] return kernel def _normalize_medical_image(self, image: torch.Tensor) -> torch.Tensor: """Normalize medical image""" try: # Z-score normalization per image mean_val = torch.mean(image) std_val = torch.std(image) if std_val > 0: normalized = (image - mean_val) / std_val # Scale to [0, 1] range normalized = (normalized - normalized.min()) / (normalized.max() - normalized.min()) else: normalized = image return normalized except Exception as e: logger.warning(f"Error normalizing image: {e}") return image def preprocess_medical_text(self, text: str, expand_abbreviations: bool = True, remove_phi: bool = True) -> str: """ Preprocess medical text Args: text: Input medical text expand_abbreviations: Whether to expand medical abbreviations remove_phi: Whether to remove potential PHI (Protected Health Information) Returns: Preprocessed text """ try: if not isinstance(text, str): text = str(text) # Convert to lowercase for processing processed_text = text.lower() # Remove potential PHI if requested if remove_phi: processed_text = self._remove_phi(processed_text) # Expand medical abbreviations if expand_abbreviations: processed_text = self._expand_medical_abbreviations(processed_text) # Clean up text processed_text = self._clean_medical_text(processed_text) # Limit length to prevent memory issues max_length = 2048 if len(processed_text) > max_length: processed_text = processed_text[:max_length] + "..." return processed_text except Exception as e: logger.error(f"Error preprocessing medical text: {e}") return text # Return original text on error def _remove_phi(self, text: str) -> str: """Remove potential Protected Health Information""" # Remove dates text = re.sub(self.medical_patterns['dates'], '[DATE]', text) # Remove times text = re.sub(self.medical_patterns['times'], '[TIME]', text) # Remove phone numbers text = re.sub(r'\b\d{3}[-.]?\d{3}[-.]?\d{4}\b', '[PHONE]', text) # Remove email addresses text = re.sub(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', '[EMAIL]', text) # Remove potential names (very basic - would need more sophisticated NER in practice) text = re.sub(r'\b[A-Z][a-z]+ [A-Z][a-z]+\b', '[NAME]', text) return text def _expand_medical_abbreviations(self, text: str) -> str: """Expand common medical abbreviations""" for abbrev, expansion in self.medical_abbreviations.items(): # Use word boundaries to avoid partial matches pattern = r'\b' + re.escape(abbrev) + r'\b' text = re.sub(pattern, expansion, text, flags=re.IGNORECASE) return text def _clean_medical_text(self, text: str) -> str: """Clean and normalize medical text""" # Remove extra whitespace text = re.sub(r'\s+', ' ', text) # Remove special characters but keep medical-relevant ones text = re.sub(r'[^\w\s\-\.\,\:\;\(\)\/\%]', '', text) # Strip leading/trailing whitespace text = text.strip() return text def batch_preprocess_medical_data(self, batch: Dict[str, Any]) -> Dict[str, Any]: """Preprocess a batch of medical data""" processed_batch = {} try: # Process images if present if 'images' in batch and batch['images'] is not None: images = batch['images'] processed_images = [] for i, image in enumerate(images): # Get modality if available modality = 'unknown' if 'modalities' in batch and i < len(batch['modalities']): modality = batch['modalities'][i] processed_image = self.preprocess_medical_image(image, modality) processed_images.append(processed_image) processed_batch['images'] = torch.stack(processed_images) # Process texts if present if 'texts' in batch: texts = batch['texts'] processed_texts = [] for text in texts: processed_text = self.preprocess_medical_text(text) processed_texts.append(processed_text) processed_batch['texts'] = processed_texts # Copy other fields for key, value in batch.items(): if key not in ['images', 'texts']: processed_batch[key] = value return processed_batch except Exception as e: logger.error(f"Error in batch preprocessing: {e}") return batch # Return original batch on error