""" Knowledge Distillation Engine Implements multi-modal knowledge distillation algorithms for creating new AI models from multiple pre-trained teacher models across different modalities. """ import logging import asyncio from typing import Dict, Any, List, Optional, Callable, Union import math import time from pathlib import Path import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import DataLoader, Dataset import numpy as np from transformers import get_linear_schedule_with_warmup from safetensors.torch import save_file logger = logging.getLogger(__name__) # Known problematic models and their error messages PROBLEMATIC_MODELS = { 'deepseek-ai/DeepSeek-V3.1-Base': 'Requires GPU with FP8 quantization support. Try using a smaller model or different hardware.', 'Wan-AI/Wan2.2-TI2V-5B': 'Uses ti2v architecture. Will attempt to load with trust_remote_code=True.', 'stabilityai/stable-diffusion': 'Diffusion models require special handling. Consider using text encoders only.', 'runwayml/stable-diffusion': 'Diffusion models require special handling. Consider using text encoders only.', } class RealMultiModalDataset(Dataset): """ Real multi-modal dataset using actual data from Hugging Face or realistic synthetic data """ def __init__(self, size: int = 1000, modalities: List[str] = None, dataset_name: str = None, split: str = "train"): self.size = size self.modalities = modalities or ['text', 'vision'] self.dataset_name = dataset_name self.split = split self.data = self._load_real_data() def _load_real_data(self): """Load real dataset from Hugging Face or create meaningful synthetic data""" try: if self.dataset_name: # Try to load real dataset from Hugging Face from datasets import load_dataset dataset = load_dataset(self.dataset_name, split=self.split, streaming=True) return list(dataset.take(self.size)) else: # Create more realistic synthetic data with patterns return self._create_realistic_synthetic_data() except Exception as e: logger.warning(f"Failed to load real dataset: {e}, using realistic synthetic data") return self._create_realistic_synthetic_data() def _create_realistic_synthetic_data(self): """Create realistic synthetic data with learnable patterns""" data = [] for i in range(self.size): # Create data with learnable patterns instead of pure random base_pattern = torch.sin(torch.linspace(0, 2*3.14159, 512)) * (i % 10 + 1) / 10 noise = torch.randn(512) * 0.1 item = {} if 'text' in self.modalities: # Create text embeddings with learnable patterns text_embedding = base_pattern + noise item['text'] = text_embedding if 'vision' in self.modalities: # Create image data with patterns image_pattern = base_pattern.unsqueeze(0).unsqueeze(0).repeat(3, 224, 224) + torch.randn(3, 224, 224) * 0.1 item['vision'] = image_pattern if 'audio' in self.modalities: # Create audio data with patterns audio_pattern = base_pattern.repeat(2) + torch.randn(1024) * 0.1 item['audio'] = audio_pattern # Add labels for supervised learning item['labels'] = torch.tensor([i % 10], dtype=torch.float32) data.append(item) return data def __len__(self): return len(self.data) def __getitem__(self, idx): if idx >= len(self.data): idx = idx % len(self.data) return self.data[idx] class MultiModalDataset(RealMultiModalDataset): """ Backward compatibility wrapper for existing code """ def __init__(self, size: int = 1000, modalities: List[str] = None): super().__init__(size=size, modalities=modalities, dataset_name=None) class StudentModel(nn.Module): """ Configurable student model for knowledge distillation """ def __init__(self, config: Dict[str, Any]): super().__init__() self.config = config self.modalities = config.get('modalities', ['text']) self.hidden_size = config.get('hidden_size', 768) self.num_layers = config.get('num_layers', 6) self.output_size = config.get('output_size', 768) # Build modality-specific encoders self.encoders = nn.ModuleDict() if 'text' in self.modalities: self.encoders['text'] = nn.Sequential( nn.Linear(512, self.hidden_size), nn.ReLU(), *[nn.Sequential( nn.Linear(self.hidden_size, self.hidden_size), nn.ReLU(), nn.Dropout(0.1) ) for _ in range(self.num_layers - 1)] ) if 'vision' in self.modalities: self.encoders['vision'] = nn.Sequential( nn.Conv2d(3, 64, 7, stride=2, padding=3), nn.ReLU(), nn.AdaptiveAvgPool2d((1, 1)), nn.Flatten(), nn.Linear(64, self.hidden_size), *[nn.Sequential( nn.Linear(self.hidden_size, self.hidden_size), nn.ReLU(), nn.Dropout(0.1) ) for _ in range(self.num_layers - 1)] ) if 'audio' in self.modalities: self.encoders['audio'] = nn.Sequential( nn.Linear(1024, self.hidden_size), nn.ReLU(), *[nn.Sequential( nn.Linear(self.hidden_size, self.hidden_size), nn.ReLU(), nn.Dropout(0.1) ) for _ in range(self.num_layers - 1)] ) # Fusion layer self.fusion = nn.Sequential( nn.Linear(self.hidden_size * len(self.modalities), self.hidden_size), nn.ReLU(), nn.Dropout(0.1), nn.Linear(self.hidden_size, self.output_size) ) def forward(self, inputs: Dict[str, torch.Tensor]) -> torch.Tensor: """Forward pass through student model""" encoded = [] for modality in self.modalities: if modality in inputs and modality in self.encoders: encoded.append(self.encoders[modality](inputs[modality])) if not encoded: raise ValueError("No valid modality inputs found") # Concatenate and fuse if len(encoded) == 1: fused = encoded[0] else: fused = torch.cat(encoded, dim=-1) fused = self.fusion(fused) return fused class KnowledgeDistillationTrainer: """ Multi-modal knowledge distillation trainer """ def __init__(self): self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') logger.info(f"Using device: {self.device}") async def create_student_model( self, teacher_models: List[Dict[str, Any]], config: Dict[str, Any] ) -> StudentModel: """ Create a student model based on teacher models and configuration Args: teacher_models: List of loaded teacher models config: Student model configuration Returns: Initialized student model """ try: # Analyze teacher models to determine student architecture modalities = set() total_params = 0 for teacher in teacher_models: modality = teacher.get('modality', 'unknown') if modality != 'unknown': modalities.add(modality) total_params += teacher.get('parameters', 0) # Configure student model student_config = { 'modalities': list(modalities) if modalities else ['text'], 'hidden_size': config.get('hidden_size', 768), 'num_layers': config.get('num_layers', 6), 'output_size': config.get('output_size', 768) } # Adjust size based on teacher complexity if total_params > 1e9: # Large teachers student_config['hidden_size'] = min(1024, student_config['hidden_size']) student_config['num_layers'] = min(12, student_config['num_layers']) elif total_params < 1e8: # Small teachers student_config['hidden_size'] = max(256, student_config['hidden_size']) student_config['num_layers'] = max(3, student_config['num_layers']) student = StudentModel(student_config) student.to(self.device) logger.info(f"Created student model with config: {student_config}") logger.info(f"Student parameters: {sum(p.numel() for p in student.parameters()):,}") return student except Exception as e: logger.error(f"Error creating student model: {str(e)}") raise async def train( self, student_model: StudentModel, teacher_models: List[Dict[str, Any]], training_params: Dict[str, Any], progress_callback: Optional[Callable] = None ) -> StudentModel: """ Train student model using knowledge distillation Args: student_model: Student model to train teacher_models: List of teacher models training_params: Training configuration progress_callback: Callback for progress updates Returns: Trained student model """ try: # Extract training parameters max_steps = training_params.get('max_steps', 1000) learning_rate = training_params.get('learning_rate', 1e-4) batch_size = training_params.get('batch_size', 8) temperature = training_params.get('temperature', 4.0) alpha = training_params.get('alpha', 0.7) # Distillation loss weight warmup_steps = training_params.get('warmup_steps', max_steps // 10) # Prepare teachers teacher_models_prepared = await self._prepare_teachers(teacher_models) # Create dataset and dataloader modalities = list(student_model.modalities) dataset = MultiModalDataset(size=max_steps * batch_size, modalities=modalities) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) # Setup optimizer and scheduler optimizer = optim.AdamW(student_model.parameters(), lr=learning_rate, weight_decay=0.01) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=warmup_steps, num_training_steps=max_steps ) # Training loop student_model.train() total_loss = 0.0 step = 0 for batch_idx, batch in enumerate(dataloader): if step >= max_steps: break # Move batch to device batch = {k: v.to(self.device) for k, v in batch.items()} # Forward pass through student student_output = student_model(batch) # Get teacher outputs teacher_outputs = [] for teacher_data in teacher_models_prepared: with torch.no_grad(): teacher_output = await self._get_teacher_output(teacher_data, batch) teacher_outputs.append(teacher_output) # Calculate distillation loss distillation_loss = self._calculate_distillation_loss( student_output, teacher_outputs, temperature, alpha ) # Backward pass optimizer.zero_grad() distillation_loss.backward() torch.nn.utils.clip_grad_norm_(student_model.parameters(), 1.0) optimizer.step() scheduler.step() # Update metrics total_loss += distillation_loss.item() step += 1 # Progress callback if progress_callback and step % 10 == 0: avg_loss = total_loss / step await progress_callback(step, max_steps, avg_loss, { 'learning_rate': scheduler.get_last_lr()[0], 'temperature': temperature }) # Log progress if step % 100 == 0: avg_loss = total_loss / step logger.info(f"Step {step}/{max_steps}, Loss: {avg_loss:.4f}") logger.info(f"Training completed. Final loss: {total_loss / max_steps:.4f}") return student_model except Exception as e: logger.error(f"Error during training: {str(e)}") raise async def _prepare_teachers(self, teacher_models: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """Prepare teacher models for inference""" prepared = [] for teacher_data in teacher_models: model = teacher_data.get('model') if model is not None: if hasattr(model, 'eval'): model.eval() if hasattr(model, 'to'): model.to(self.device) prepared.append(teacher_data) return prepared async def _get_teacher_output( self, teacher_data: Dict[str, Any], batch: Dict[str, torch.Tensor] ) -> torch.Tensor: """Get output from a teacher model with improved handling""" try: model = teacher_data.get('model') modality = teacher_data.get('modality', 'text') model_name = teacher_data.get('name', 'unknown') logger.debug(f"Getting output from teacher model: {model_name} (modality: {modality})") # Determine batch size batch_size = next(iter(batch.values())).size(0) if batch else 1 if model is None: logger.warning(f"Teacher model {model_name} is None, using synthetic output") return self._create_synthetic_teacher_output(batch_size, modality) # Try to get real output from the model if modality == 'text' and 'text' in batch: input_tensor = batch['text'] output = self._process_text_model(model, input_tensor, model_name) elif modality == 'vision' and 'vision' in batch: input_tensor = batch['vision'] output = self._process_vision_model(model, input_tensor, model_name) elif modality == 'audio' and 'audio' in batch: input_tensor = batch['audio'] output = self._process_audio_model(model, input_tensor, model_name) else: logger.warning(f"No matching modality for {model_name}, using synthetic output") output = self._create_synthetic_teacher_output(batch_size, modality) # Ensure output is 2D (batch_size, features) if output.dim() > 2: output = output.view(output.size(0), -1) elif output.dim() == 1: output = output.unsqueeze(0) return output except Exception as e: logger.error(f"Error getting teacher output from {model_name}: {e}") batch_size = next(iter(batch.values())).size(0) if batch else 1 return self._create_synthetic_teacher_output(batch_size, modality) def _process_text_model(self, model, input_tensor: torch.Tensor, model_name: str) -> torch.Tensor: """Process text model with proper error handling""" try: # Ensure proper input shape if input_tensor.dim() == 1: input_tensor = input_tensor.unsqueeze(0) # Try different model interfaces if hasattr(model, 'encode'): # For sentence transformers output = model.encode(input_tensor) elif hasattr(model, 'forward'): # For standard PyTorch models with torch.no_grad(): output = model(input_tensor) elif callable(model): # For callable models output = model(input_tensor) else: raise ValueError(f"Model {model_name} is not callable") # Handle different output types if isinstance(output, dict): # For models that return dict (like transformers) if 'last_hidden_state' in output: output = output['last_hidden_state'].mean(dim=1) # Average pooling elif 'pooler_output' in output: output = output['pooler_output'] else: # Take first tensor value output = next(iter(output.values())) return output.to(self.device) except Exception as e: logger.warning(f"Failed to process text model {model_name}: {e}") batch_size = input_tensor.size(0) return self._create_synthetic_teacher_output(batch_size, 'text') def _process_vision_model(self, model, input_tensor: torch.Tensor, model_name: str) -> torch.Tensor: """Process vision model with proper error handling""" try: # Ensure proper input shape (batch_size, channels, height, width) if input_tensor.dim() == 3: input_tensor = input_tensor.unsqueeze(0) with torch.no_grad(): if hasattr(model, 'forward'): output = model(input_tensor) elif callable(model): output = model(input_tensor) else: raise ValueError(f"Vision model {model_name} is not callable") # Handle different output types if isinstance(output, dict): if 'last_hidden_state' in output: output = output['last_hidden_state'].mean(dim=1) elif 'pooler_output' in output: output = output['pooler_output'] else: output = next(iter(output.values())) return output.to(self.device) except Exception as e: logger.warning(f"Failed to process vision model {model_name}: {e}") batch_size = input_tensor.size(0) return self._create_synthetic_teacher_output(batch_size, 'vision') def _process_audio_model(self, model, input_tensor: torch.Tensor, model_name: str) -> torch.Tensor: """Process audio model with proper error handling""" try: if input_tensor.dim() == 1: input_tensor = input_tensor.unsqueeze(0) with torch.no_grad(): if hasattr(model, 'forward'): output = model(input_tensor) elif callable(model): output = model(input_tensor) else: raise ValueError(f"Audio model {model_name} is not callable") if isinstance(output, dict): if 'last_hidden_state' in output: output = output['last_hidden_state'].mean(dim=1) elif 'pooler_output' in output: output = output['pooler_output'] else: output = next(iter(output.values())) return output.to(self.device) except Exception as e: logger.warning(f"Failed to process audio model {model_name}: {e}") batch_size = input_tensor.size(0) return self._create_synthetic_teacher_output(batch_size, 'audio') def _create_synthetic_teacher_output(self, batch_size: int, modality: str) -> torch.Tensor: """Create synthetic teacher output with some structure""" # Create output with some pattern instead of pure random if modality == 'text': # Text-like embeddings base = torch.linspace(0, 1, 768).unsqueeze(0).repeat(batch_size, 1) noise = torch.randn(batch_size, 768) * 0.1 output = base + noise elif modality == 'vision': # Vision-like features base = torch.linspace(0, 1, 768).unsqueeze(0).repeat(batch_size, 1) noise = torch.randn(batch_size, 768) * 0.15 output = base * 0.8 + noise elif modality == 'audio': # Audio-like features base = torch.sin(torch.linspace(0, 10, 768)).unsqueeze(0).repeat(batch_size, 1) noise = torch.randn(batch_size, 768) * 0.1 output = base + noise else: # Default output output = torch.randn(batch_size, 768) return output.to(self.device) def _calculate_distillation_loss( self, student_output: torch.Tensor, teacher_outputs: List[torch.Tensor], temperature: float, alpha: float ) -> torch.Tensor: """ Calculate knowledge distillation loss Args: student_output: Student model output teacher_outputs: List of teacher outputs temperature: Temperature for softmax alpha: Weight for distillation loss Returns: Combined distillation loss """ if not teacher_outputs: return torch.tensor(0.0, device=self.device, requires_grad=True) # Ensemble teacher outputs (average) teacher_ensemble = torch.stack(teacher_outputs).mean(dim=0) # Ensure same dimensions min_dim = min(student_output.size(-1), teacher_ensemble.size(-1)) student_logits = student_output[..., :min_dim] teacher_logits = teacher_ensemble[..., :min_dim] # Temperature-scaled softmax student_soft = F.log_softmax(student_logits / temperature, dim=-1) teacher_soft = F.softmax(teacher_logits / temperature, dim=-1) # KL divergence loss distillation_loss = F.kl_div(student_soft, teacher_soft, reduction='batchmean') # Optional: Add MSE loss for feature matching feature_loss = F.mse_loss(student_logits, teacher_logits) # Combine losses total_loss = alpha * distillation_loss + (1 - alpha) * feature_loss return total_loss async def save_model(self, model: StudentModel, save_path: str, training_metadata: Dict[str, Any] = None) -> None: """ Save trained model with complete files for HF compatibility Args: model: Trained student model save_path: Path to save the model (should be .safetensors file) training_metadata: Additional training information """ try: from datetime import datetime from pathlib import Path import json # Get save directory and create it save_path = Path(save_path) save_dir = save_path.parent save_dir.mkdir(parents=True, exist_ok=True) # Prepare state dict state_dict = model.state_dict() # Convert to CPU and ensure contiguous cpu_state_dict = {} for key, tensor in state_dict.items(): cpu_state_dict[key] = tensor.cpu().contiguous() # Save model weights using safetensors save_file(cpu_state_dict, str(save_path)) # Create comprehensive config.json (HF compatible) config_path = save_dir / "config.json" model_config = { "architectures": [str(type(model).__name__)], "model_type": "distilled_student", "hidden_size": getattr(model, 'hidden_size', 768), "num_hidden_layers": getattr(model, 'num_layers', 12), "num_attention_heads": getattr(model, 'num_attention_heads', 12), "intermediate_size": getattr(model, 'intermediate_size', 3072), "vocab_size": getattr(model, 'vocab_size', 30522), "max_position_embeddings": getattr(model, 'max_position_embeddings', 512), "modalities": list(model.modalities) if hasattr(model, 'modalities') else ["text"], "torch_dtype": "float32", "transformers_version": "4.45.2", "created_at": datetime.now().isoformat(), "framework": "pytorch", "can_be_retrained": True, "is_student_model": True, "supports_incremental_training": True, "auto_map": { "AutoModel": "model.StudentModel" } } # Add original model config if available if hasattr(model, 'config') and model.config: model_config.update(model.config) with open(config_path, 'w') as f: json.dump(model_config, f, indent=2) # Save model.py file for custom architecture model_py_path = save_dir / "model.py" model_py_content = '''""" Custom Student Model for Knowledge Distillation """ import torch import torch.nn as nn from transformers import PreTrainedModel, PretrainedConfig from typing import Dict, Any, List, Optional class StudentModelConfig(PretrainedConfig): model_type = "distilled_student" def __init__( self, hidden_size=768, num_layers=12, num_attention_heads=12, intermediate_size=3072, vocab_size=30522, max_position_embeddings=512, modalities=["text"], **kwargs ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_layers = num_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.modalities = modalities class StudentModel(PreTrainedModel): config_class = StudentModelConfig def __init__(self, config): super().__init__(config) self.config = config self.hidden_size = config.hidden_size self.num_layers = config.num_layers self.modalities = config.modalities # Build model layers based on config self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size) self.layers = nn.ModuleList([ nn.TransformerEncoderLayer( d_model=config.hidden_size, nhead=config.num_attention_heads, dim_feedforward=config.intermediate_size, batch_first=True ) for _ in range(config.num_layers) ]) self.pooler = nn.Linear(config.hidden_size, config.hidden_size) def forward(self, input_ids=None, attention_mask=None, **kwargs): if input_ids is not None: embeddings = self.embeddings(input_ids) else: # Handle other modalities embeddings = kwargs.get('inputs_embeds') for layer in self.layers: embeddings = layer(embeddings, src_key_padding_mask=attention_mask) pooled = self.pooler(embeddings.mean(dim=1)) return { 'last_hidden_state': embeddings, 'pooler_output': pooled } ''' with open(model_py_path, 'w') as f: f.write(model_py_content) # Save training history training_history_path = save_dir / "training_history.json" training_history = { "model_info": { "type": "student", "architecture": str(type(model).__name__), "modalities": list(model.modalities) if hasattr(model, 'modalities') else ["text"], "hidden_size": getattr(model, 'hidden_size', 768), "num_layers": getattr(model, 'num_layers', 12) }, "training_sessions": [ { "session_id": training_metadata.get('session_id') if training_metadata else None, "timestamp": datetime.now().isoformat(), "teacher_models": training_metadata.get('teacher_models', []) if training_metadata else [], "distillation_strategy": training_metadata.get('strategy', 'ensemble') if training_metadata else 'ensemble', "training_params": training_metadata.get('training_params', {}) if training_metadata else {}, "final_loss": getattr(self, 'final_loss', None) } ], "retraining_info": { "can_be_used_as_student": True, "can_accept_new_teachers": True, "original_teachers": training_metadata.get('teacher_models', []) if training_metadata else [], "recommended_learning_rate": training_metadata.get('training_params', {}).get('learning_rate', 1e-4) * 0.1 if training_metadata else 1e-5, "supports_teacher_addition": True } } with open(training_history_path, 'w') as f: json.dump(training_history, f, indent=2) # Create README.md readme_path = save_dir / "README.md" teacher_models = training_metadata.get('teacher_models', []) if training_metadata else [] readme_content = f'''--- license: apache-2.0 tags: - knowledge-distillation - pytorch - transformers - student-model base_model: {teacher_models[0] if teacher_models else 'unknown'} --- # Distilled Student Model This is a student model created through knowledge distillation. ## Model Details - **Architecture**: {str(type(model).__name__)} - **Hidden Size**: {getattr(model, 'hidden_size', 768)} - **Number of Layers**: {getattr(model, 'num_layers', 12)} - **Modalities**: {list(model.modalities) if hasattr(model, 'modalities') else ["text"]} - **Created**: {datetime.now().isoformat()} ## Teacher Models {chr(10).join([f"- {teacher}" for teacher in teacher_models])} ## Training Details - **Strategy**: {training_metadata.get('strategy', 'ensemble') if training_metadata else 'ensemble'} - **Training Steps**: {training_metadata.get('training_params', {}).get('max_steps', 'unknown') if training_metadata else 'unknown'} - **Learning Rate**: {training_metadata.get('training_params', {}).get('learning_rate', 'unknown') if training_metadata else 'unknown'} ## Usage ```python from transformers import AutoModel, AutoConfig # Load the model model = AutoModel.from_pretrained("path/to/model", trust_remote_code=True) config = AutoConfig.from_pretrained("path/to/model") # Use for inference or further training outputs = model(input_ids) ``` ## Retraining This model can be used as a student model for incremental training: ```python # Load as existing student for further distillation existing_student = "path/to/this/model" # Add new teachers and continue training ``` ## Files - `pytorch_model.safetensors`: Model weights - `config.json`: Model configuration - `model.py`: Custom model architecture - `training_history.json`: Complete training history - `README.md`: This file ''' with open(readme_path, 'w') as f: f.write(readme_content) logger.info(f"Complete model package saved to {save_dir}") except Exception as e: logger.error(f"Error saving model: {str(e)}") raise def _is_problematic_model(self, model_path: str) -> bool: """Check if a model is known to be problematic""" return model_path in PROBLEMATIC_MODELS def _get_model_error_message(self, model_path: str) -> str: """Get error message for problematic models""" return PROBLEMATIC_MODELS.get(model_path, "Unknown compatibility issue") def _should_retry_with_trust_remote_code(self, model_path: str, error_msg: str) -> bool: """Determine if we should retry loading with trust_remote_code=True""" trust_indicators = [ 'ti2v', 'does not recognize this architecture', 'trust_remote_code', 'custom architecture' ] return any(indicator in error_msg.lower() for indicator in trust_indicators)