File size: 12,490 Bytes
5e02fce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea94406
5e02fce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
"""
Code to define CLAP-related networks.
Some code inspired from here https://github.com/zhepeiw/clap_curation

Credits:
    * Francesco Paissan 2024
"""

import numpy as np
import torch
import torch.nn.functional as F
from micromind.networks import PhiNet
from speechbrain.utils.fetching import fetch
from torch import nn
from torchinfo import summary
from transformers import AutoModel, BatchEncoding


def get_model_from_str(s, vs=("alpha", "beta", "t0", "N")):
    def get_var(s, key):
        tmp = s.split("_")
        return tmp[tmp.index(key) + 1]

    verb = "PhiNet initialized with "
    ret = {}
    for k in vs:
        verb += f"{k}={get_var(s, k)} "
        ret[k] = float(get_var(s, k))

    ret["t_zero"] = ret["t0"]
    ret["num_layers"] = ret["N"]
    del ret["t0"]
    del ret["N"]

    return ret


def get_audio_encoder(name: str):
    if name == "Cnn14":
        return Cnn14
    elif "phinet" in name:
        phinet_conf = get_model_from_str(name)
        return PhiNet(input_shape=(1, 640, 64), compatibility=True, **phinet_conf)
    else:
        raise Exception(
            "The audio encoder name {} is incorrect or not supported".format(name)
        )


class Projection(nn.Module):
    def __init__(self, d_in: int, d_out: int, p: float = 0.5) -> None:
        super().__init__()
        self.linear1 = nn.Linear(d_in, d_out, bias=False)
        self.linear2 = nn.Linear(d_out, d_out, bias=False)
        self.layer_norm = nn.LayerNorm(d_out)
        self.drop = nn.Dropout(p)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        embed1 = self.linear1(x)
        embed2 = self.drop(self.linear2(F.gelu(embed1)))
        embeds = self.layer_norm(embed1 + embed2)
        return embeds


class PhiNet(PhiNet):
    def __init__(self, embedding_dim=2048, *args, **kwargs):
        super().__init__(*args, **kwargs)

        self.bn0 = nn.BatchNorm2d(64)

        if embedding_dim is not None:
            in_channels_next = self._layers[-1]._layers[-2].weight.shape[0]
            self.pn_block = nn.Conv2d(
                in_channels_next,
                embedding_dim,
                kernel_size=1,
                stride=2,
            )

    def forward(self, x):
        if x.dim() == 3:
            x = x[:, None]

        x = x.transpose(1, 3)
        x = self.bn0(x)
        x = x.transpose(1, 3)

        x = super().forward(x)
        embedding = x

        x = self.pn_block(x)
        x = x.mean((-1, -2))

        return {"embedding": (x, embedding), "clipwise_output": x}


class ConvBlock(nn.Module):
    def __init__(self, in_channels, out_channels):

        super(ConvBlock, self).__init__()

        self.conv1 = nn.Conv2d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=(3, 3),
            stride=(1, 1),
            padding=(1, 1),
            bias=False,
        )

        self.conv2 = nn.Conv2d(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=(3, 3),
            stride=(1, 1),
            padding=(1, 1),
            bias=False,
        )

        self.bn1 = nn.BatchNorm2d(out_channels)
        self.bn2 = nn.BatchNorm2d(out_channels)

    def forward(self, input, pool_size=(2, 2), pool_type="avg"):

        x = input
        x = F.relu_(self.bn1(self.conv1(x)))
        x = F.relu_(self.bn2(self.conv2(x)))
        if pool_type == "max":
            x = F.max_pool2d(x, kernel_size=pool_size)
        elif pool_type == "avg":
            x = F.avg_pool2d(x, kernel_size=pool_size)
        elif pool_type == "avg+max":
            x1 = F.avg_pool2d(x, kernel_size=pool_size)
            x2 = F.max_pool2d(x, kernel_size=pool_size)
            x = x1 + x2
        else:
            raise Exception("Incorrect argument!")

        return x


class ConvBlock5x5(nn.Module):
    def __init__(self, in_channels, out_channels):

        super(ConvBlock5x5, self).__init__()

        self.conv1 = nn.Conv2d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=(5, 5),
            stride=(1, 1),
            padding=(2, 2),
            bias=False,
        )

        self.bn1 = nn.BatchNorm2d(out_channels)

    def forward(self, input, pool_size=(2, 2), pool_type="avg"):

        x = input
        x = F.relu_(self.bn1(self.conv1(x)))
        if pool_type == "max":
            x = F.max_pool2d(x, kernel_size=pool_size)
        elif pool_type == "avg":
            x = F.avg_pool2d(x, kernel_size=pool_size)
        elif pool_type == "avg+max":
            x1 = F.avg_pool2d(x, kernel_size=pool_size)
            x2 = F.max_pool2d(x, kernel_size=pool_size)
            x = x1 + x2
        else:
            raise Exception("Incorrect argument!")

        return x


class AttBlock(nn.Module):
    def __init__(self, n_in, n_out, activation="linear", temperature=1.0):
        super(AttBlock, self).__init__()

        self.activation = activation
        self.temperature = temperature
        self.att = nn.Conv1d(
            in_channels=n_in,
            out_channels=n_out,
            kernel_size=1,
            stride=1,
            padding=0,
            bias=True,
        )
        self.cla = nn.Conv1d(
            in_channels=n_in,
            out_channels=n_out,
            kernel_size=1,
            stride=1,
            padding=0,
            bias=True,
        )

        self.bn_att = nn.BatchNorm1d(n_out)

    def forward(self, x):
        # x: (n_samples, n_in, n_time)
        norm_att = torch.softmax(torch.clamp(self.att(x), -10, 10), dim=-1)
        cla = self.nonlinear_transform(self.cla(x))
        x = torch.sum(norm_att * cla, dim=2)
        return x, norm_att, cla

    def nonlinear_transform(self, x):
        if self.activation == "linear":
            return x
        elif self.activation == "sigmoid":
            return torch.sigmoid(x)


class Cnn14(nn.Module):
    def __init__(
        self,
        classes_num,
        out_emb,
    ):

        super(Cnn14, self).__init__()

        self.bn0 = nn.BatchNorm2d(64)

        self.conv_block1 = ConvBlock(in_channels=1, out_channels=64)
        self.conv_block2 = ConvBlock(in_channels=64, out_channels=128)
        self.conv_block3 = ConvBlock(in_channels=128, out_channels=256)
        self.conv_block4 = ConvBlock(in_channels=256, out_channels=512)
        self.conv_block5 = ConvBlock(in_channels=512, out_channels=1024)
        self.conv_block6 = ConvBlock(in_channels=1024, out_channels=2048)

        # out_emb is 2048 for best Cnn14
        self.fc1 = nn.Linear(2048, out_emb, bias=True)
        self.fc_audioset = nn.Linear(out_emb, classes_num, bias=True)

    def forward(self, x, mixup_lambda=None):
        """
        Input: (batch_size, data_length)
        """
        # (batch_size, 1, time_steps, mel_bins)

        if x.dim() == 3:
            x = x.unsqueeze(1)

        x = x.transpose(1, 3)
        x = self.bn0(x)
        x = x.transpose(1, 3)

        x = self.conv_block1(x, pool_size=(2, 2), pool_type="avg")
        x = F.dropout(x, p=0.2, training=self.training)
        x = self.conv_block2(x, pool_size=(2, 2), pool_type="avg")
        x = F.dropout(x, p=0.2, training=self.training)
        x4_out = self.conv_block3(x, pool_size=(2, 2), pool_type="avg")
        x = F.dropout(x4_out, p=0.2, training=self.training)
        x3_out = self.conv_block4(x, pool_size=(2, 2), pool_type="avg")
        x = F.dropout(x3_out, p=0.2, training=self.training)
        x2_out = self.conv_block5(x, pool_size=(2, 2), pool_type="avg")
        x = F.dropout(x2_out, p=0.2, training=self.training)
        x1_out = self.conv_block6(x, pool_size=(1, 1), pool_type="avg")
        x = F.dropout(x1_out, p=0.2, training=self.training)
        x = torch.mean(x, dim=3)

        (x1, _) = torch.max(x, dim=2)
        x2 = torch.mean(x, dim=2)
        x = x1 + x2
        x = F.dropout(x, p=0.5, training=self.training)
        x = F.relu_(self.fc1(x))
        embedding = F.dropout(x, p=0.5, training=self.training)
        clipwise_output = torch.sigmoid(self.fc_audioset(x))

        output_dict = {
            "clipwise_output": clipwise_output,
            "embedding": (embedding, x1_out, x2_out, x3_out, x4_out),
        }

        return output_dict


class AudioEncoder(nn.Module):
    def __init__(
        self,
        audioenc_name: str,
        d_in: int,
        d_out: int,
        classes_num: int,
    ) -> None:
        super().__init__()

        audio_encoder = get_audio_encoder(audioenc_name)

        if not "phinet" in audioenc_name:
            self.base = audio_encoder(
                classes_num,
                d_in,
            )
        else:
            self.base = audio_encoder

        self.projection = Projection(d_in, d_out)

    def forward(self, x):
        out_dict = self.base(x)
        audio_features, audio_classification_output = (
            out_dict["embedding"][0],
            out_dict["clipwise_output"],
        )
        projected_vec = self.projection(audio_features)

        return (
            projected_vec,
            out_dict["embedding"][1:],
            audio_classification_output,
        )


class TextEncoder(nn.Module):
    def __init__(self, d_out: int, text_model: str, transformer_embed_dim: int) -> None:
        super().__init__()
        self.base = AutoModel.from_pretrained(text_model)

        self.projection = Projection(transformer_embed_dim, d_out)

    def forward(self, x):
        out = self.base(**x)[0]
        hidden_state = out
        out = out[:, 0, :]  # get CLS token output
        projected_vec = self.projection(out)
        self.hidden_state = hidden_state.detach()
        return projected_vec


class CLAP(nn.Module):
    def __init__(
        self,
        # audio
        audioenc_name: str,
        classes_num: int,
        out_emb: int,
        # text
        text_model: str,
        transformer_embed_dim: int,
        # common
        d_proj: int,
        pretrained_weights: bool = True,
        CLAP_weights: str = None,
        # audio student
        audioenc_name_student=None,
        out_emb_student=None,
    ):
        super().__init__()
        ckpt_path = None
        if pretrained_weights and CLAP_weights is not None:
            weights_path = "CLAP_weights.pth"
            tmp = CLAP_weights.split("/")
            print(
                " ".join(
                    """Fetching CLAP weights.
                The checkpoint is a ~2GB, so be patient.
                The process will start right after.
                """.split()
                )
            )
            fetch(
                tmp[-1],
                "/".join(tmp[:-1]),
                savedir=".",
                save_filename=weights_path,
            )

            ckpt_path = weights_path

        self.audio_encoder = AudioEncoder(
            audioenc_name,
            out_emb,
            d_proj,
            classes_num,
        )

        self.caption_encoder = TextEncoder(d_proj, text_model, transformer_embed_dim)

        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))

        state_dict = torch.load(ckpt_path, map_location="cpu")["model"]
        self.load_state_dict(self.clean_state_dict(state_dict))
        print("Loaded pretrained CLAP checkpoint.")

    @staticmethod
    def clean_state_dict(state_dict):
        """Removes pre-processing keys from the state-dict."""
        keys_to_remove = []
        for k in state_dict:
            if "spectrogram" in k or "mel" in k:
                keys_to_remove.append(k)

        for k in keys_to_remove:
            state_dict.pop(
                k,
                None,
            )

        return state_dict

    def forward(self, audio, input_ids, token_type_ids, attention_mask, single=None):
        audio_embed = None
        caption_embed = None

        if not single == "txt":
            audio_embed, _, _ = self.audio_encoder(audio)
            audio_embed = audio_embed / audio_embed.norm(dim=1, keepdim=True)

        if not single == "aud":
            text = BatchEncoding(
                {
                    "input_ids": input_ids,
                    "token_type_ids": token_type_ids,
                    "attention_mask": attention_mask,
                }
            )
            caption_embed = self.caption_encoder(text)
            caption_embed = caption_embed / caption_embed.norm(dim=1, keepdim=True)

        return caption_embed, audio_embed