import gradio as gr from gradio_client import Client import os import tempfile BACKEND_URL = os.environ.get("BACKEND_URL", "").strip() try: client = Client(BACKEND_URL, headers={"ngrok-skip-browser-warning": "true"}) backend_available = True except: client = None backend_available = False def process_media(file_obj, webcam_img, model_type, conf_thresh, max_dets, task_type): """Process media - backend expects both file and webcam paths""" if not client: return [gr.update()] * 5 try: # Convert webcam PIL to file path if present webcam_path = None if webcam_img is not None: with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp: webcam_img.save(tmp, 'PNG') webcam_path = tmp.name # Backend expects both parameters - use None for missing one result = client.predict( uploaded_file_obj=file_obj if file_obj else None, webcam_image_pil=webcam_path if webcam_path else None, model_type_choice=model_type, conf_threshold_ui=conf_thresh, max_detections_ui=max_dets, task_type=task_type, api_name="/process_media" ) # Cleanup if webcam_path and os.path.exists(webcam_path): os.unlink(webcam_path) return result except Exception as e: print(f"Process error: {e}") # Return error message in processed image slot return [ gr.update(), # raw image file gr.update(), # raw video file gr.update(), # raw image webcam gr.update(value=None, visible=True), # processed image - show error gr.update() # processed video ] # Simplified interface without complex preview forwarding with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# 🐵 PrimateFace Detection, Pose & Gaze Demo") if not backend_available: gr.Markdown("### 🔴 GPU Server Offline") else: with gr.Row(): with gr.Column(): with gr.Tabs(): with gr.TabItem("Upload"): input_file = gr.File(label="Upload Image/Video") # Simple local preview preview_img = gr.Image(label="Preview", visible=False) with gr.TabItem("Webcam"): input_webcam = gr.Image(sources=["webcam"], type="pil") clear_btn = gr.Button("Clear All") with gr.Column(): gr.Markdown("### Results") output_image = gr.Image(label="Processed", visible=False) output_video = gr.Video(label="Processed", visible=False) # Examples gr.Examples( examples=[["images/" + f] for f in [ "allocebus_000003.jpeg", "tarsius_000120.jpeg", "nasalis_proboscis-monkey.png", "macaca_000032.jpeg", "mandrillus_000011.jpeg", "pongo_000006.jpeg" ]], inputs=input_file ) submit_btn = gr.Button("Detect Faces", variant="primary") # Controls model_choice = gr.Radio(["MMDetection"], value="MMDetection", visible=False) task_type = gr.Dropdown( ["Face Detection", "Face Pose Estimation", "Gaze Estimation [experimental]"], value="Face Detection" ) conf_threshold = gr.Slider(0.05, 0.95, 0.25, step=0.05, label="Confidence") max_detections = gr.Slider(1, 10, 3, step=1, label="Max Detections") # Simple local preview for uploaded files def show_preview(file): if file and file.name.lower().endswith(('.jpg', '.jpeg', '.png', '.bmp')): return gr.update(value=file, visible=True) return gr.update(visible=False) input_file.change(show_preview, inputs=[input_file], outputs=[preview_img]) # Main processing - only use last 3 outputs (skip raw previews) def process_and_extract_outputs(*args): result = process_media(*args) # Return only processed outputs return result[-2:] # Just processed image and video submit_btn.click( process_and_extract_outputs, inputs=[input_file, input_webcam, model_choice, conf_threshold, max_detections, task_type], outputs=[output_image, output_video] ) # Simple clear clear_btn.click( lambda: [gr.update(value=None), gr.update(value=None), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)], outputs=[input_file, input_webcam, preview_img, output_image, output_video] ) demo.launch()