Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
import torch | |
from gtts import gTTS | |
import io | |
st.set_page_config(page_title="Your Image to Audio Story", | |
page_icon="🦜") | |
st.header("Turn Your Image📷 to a Short Audio Story🔊 for Children👶") | |
uploaded_file = st.file_uploader("Select an Image After the Models are Loaded...") | |
# function part | |
# Preload models once | |
def load_models(): | |
return { | |
"img_model": pipeline("image-to-text", "cnmoro/tiny-image-captioning"), | |
"story_model": pipeline("text-generation", "Qwen/Qwen2.5-0.5B-Instruct") | |
} | |
models = load_models() | |
# img2text | |
def img2text(url): | |
text = models["img_model"](url)[0]["generated_text"] | |
return text | |
# text2story | |
def text2story(text): | |
# Define your messages | |
prompt = f"Generate a brief 100-word story about: {text}" | |
messages = [ | |
{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "user", "content": prompt} | |
] | |
response = models["story_model"]( | |
messages, | |
max_new_tokens=100, | |
do_sample=True, | |
temperature=0.7)[0]["generated_text"] | |
story_text = response[2]["content"] | |
return story_text | |
# text2audio | |
def text2audio(story_text): | |
# Create temporary in-memory file | |
audio_io = io.BytesIO() | |
# Generate speech using gTTS | |
tts = gTTS(text=story_text, lang='en', slow=False) | |
tts.write_to_fp(audio_io) | |
audio_io.seek(0) | |
# Return as dictionary with compatible structure | |
return { | |
'audio': audio_io, | |
'sampling_rate': 16000 # gTTS uses 16kHz by default | |
} | |
# Initialize session state variables | |
if 'processed_data' not in st.session_state: | |
st.session_state.processed_data = { | |
'scenario': None, | |
'story': None, | |
'audio': None | |
} | |
if uploaded_file is not None: | |
print(uploaded_file) | |
bytes_data = uploaded_file.getvalue() | |
with open(uploaded_file.name, "wb") as file: | |
file.write(bytes_data) | |
st.image(uploaded_file, caption="Uploaded Image", | |
use_container_width=True) | |
# Only process if file is new | |
if st.session_state.get('current_file') != uploaded_file.name: | |
st.session_state.current_file = uploaded_file.name | |
# Stage 1: Image to Text | |
with st.spinner('Processing image...'): | |
st.session_state.processed_data['scenario'] = img2text(uploaded_file.name) | |
# Stage 2: Text to Story | |
with st.spinner('Generating story...'): | |
st.session_state.processed_data['story'] = text2story( | |
st.session_state.processed_data['scenario'] | |
) | |
# Stage 3: Story to Audio | |
with st.spinner('Creating audio...'): | |
st.session_state.processed_data['audio'] = text2audio( | |
st.session_state.processed_data['story'] | |
) | |
# Display results | |
# st.image(uploaded_file) | |
st.write("Caption:", st.session_state.processed_data['scenario']) | |
st.write("Story:", st.session_state.processed_data['story']) | |
# Keep audio button OUTSIDE file processing block | |
if st.button("Play Audio of the Story Generated"): | |
if st.session_state.processed_data.get('audio'): | |
audio_data = st.session_state.processed_data['audio'] | |
# Convert BytesIO to bytes and specify format | |
st.audio( | |
audio_data['audio'].getvalue(), | |
format="audio/mp3" # gTTS outputs MP3 by default | |
) | |
else: | |
st.warning("Please generate a story first!") |