Spaces:
Runtime error
Runtime error
import collections | |
from datetime import datetime | |
from datasets import DatasetDict, load_dataset | |
import numpy as np | |
datasets = { | |
"stars": load_dataset("open-source-metrics/stars").sort('dates'), | |
"issues": load_dataset("open-source-metrics/issues").sort('dates'), | |
"pip": load_dataset("open-source-metrics/pip").sort('day') | |
} | |
val = 0 | |
def _range(e): | |
global val | |
e['range'] = val | |
val += 1 | |
current_date = datetime.strptime(e['dates'], "%Y-%m-%dT%H:%M:%SZ") | |
first_date = datetime.fromtimestamp(1) | |
week = abs(current_date - first_date).days // 7 | |
e['week'] = week | |
return e | |
def _ignore_org_members(e): | |
global val | |
e['range_non_org'] = val | |
if e['type']['authorAssociation'] != 'MEMBER': | |
val += 1 | |
return e | |
stars = {} | |
for k, v in datasets['stars'].items(): | |
stars[k] = v.map(_range) | |
val = 0 | |
issues = {} | |
for k, v in datasets['issues'].items(): | |
issues[k] = v.map(_range) | |
val = 0 | |
issues[k] = issues[k].map(_ignore_org_members) | |
val = 0 | |
datasets['stars'] = DatasetDict(**stars) | |
datasets['issues'] = DatasetDict(**issues) | |
def link_values(library_names, returned_values): | |
previous_values = {library_name: None for library_name in library_names} | |
for library_name in library_names: | |
for i in returned_values.keys(): | |
if library_name not in returned_values[i]: | |
returned_values[i][library_name] = previous_values[library_name] | |
else: | |
previous_values[library_name] = returned_values[i][library_name] | |
return returned_values | |
def running_mean(x, N, total_length=-1): | |
cumsum = np.cumsum(np.insert(x, 0, 0)) | |
to_pad = max(total_length - len(cumsum), 0) | |
return np.pad(cumsum[N:] - cumsum[:-N], (to_pad, 0)) / float(N) | |
def retrieve_pip_installs(library_names, cummulated): | |
if cummulated: | |
returned_values = {} | |
for library_name in library_names: | |
for i in datasets['pip'][library_name]: | |
if i['day'] in returned_values: | |
returned_values[i['day']]['Cumulated'] += i['num_downloads'] | |
else: | |
returned_values[i['day']] = {'Cumulated': i['num_downloads']} | |
library_names = ['Cumulated'] | |
else: | |
returned_values = {} | |
for library_name in library_names: | |
for i in datasets['pip'][library_name]: | |
if i['day'] in returned_values: | |
returned_values[i['day']][library_name] = i['num_downloads'] | |
else: | |
returned_values[i['day']] = {library_name: i['num_downloads']} | |
for library_name in library_names: | |
for i in returned_values.keys(): | |
if library_name not in returned_values[i]: | |
returned_values[i][library_name] = None | |
returned_values = collections.OrderedDict(sorted(returned_values.items())) | |
output = {l: [k[l] for k in returned_values.values()] for l in library_names} | |
output['day'] = list(returned_values.keys()) | |
return output | |
def retrieve_stars(libraries, week_over_week): | |
returned_values = {} | |
dataset_dict = datasets['stars'] | |
for library_name in libraries: | |
dataset = dataset_dict[library_name] | |
last_value = 0 | |
last_week = dataset[0]['week'] | |
for i in dataset: | |
if week_over_week and last_week == i['week']: | |
continue | |
if i['dates'] in returned_values: | |
returned_values[i['dates']][library_name] = i['range'] - last_value | |
else: | |
returned_values[i['dates']] = {library_name: i['range'] - last_value} | |
last_value = i['range'] if week_over_week else 0 | |
last_week = i['week'] | |
returned_values = collections.OrderedDict(sorted(returned_values.items())) | |
returned_values = link_values(libraries, returned_values) | |
output = {l: [k[l] for k in returned_values.values()][::-1] for l in libraries} | |
output['day'] = list(returned_values.keys())[::-1] | |
# Trim down to a smaller number of points. | |
output = {k: [v for i, v in enumerate(value) if i % int(len(value) / 100) == 0] for k, value in output.items()} | |
return output | |
def retrieve_issues(libraries, exclude_org_members, week_over_week): | |
returned_values = {} | |
dataset_dict = datasets['issues'] | |
range_id = 'range' if not exclude_org_members else 'range_non_org' | |
for library_name in libraries: | |
dataset = dataset_dict[library_name] | |
last_value = 0 | |
last_week = dataset[0]['week'] | |
for i in dataset: | |
if week_over_week and last_week == i['week']: | |
continue | |
if i['dates'] in returned_values: | |
returned_values[i['dates']][library_name] = i[range_id] - last_value | |
else: | |
returned_values[i['dates']] = {library_name: i[range_id] - last_value} | |
last_value = i[range_id] if week_over_week else 0 | |
last_week = i['week'] | |
returned_values = collections.OrderedDict(sorted(returned_values.items())) | |
returned_values = link_values(libraries, returned_values) | |
output = {l: [k[l] for k in returned_values.values()][::-1] for l in libraries} | |
output['day'] = list(returned_values.keys())[::-1] | |
# Trim down to a smaller number of points. | |
output = { | |
k: [v for i, v in enumerate(value) if i % int(len(value) / 100) == 0] for k, value in output.items() | |
} | |
return output |